
Page 1 of 1

Exercise Instructions
Testing for Developers Course

Presented by Gerard Meszaros

xUnitTraining@gerardmeszaros.com

Contents:
Part 1: Language-Specific Cheat Sheets

Part 2: Exercise Instructions

Part 3: Evaluation Forms (Fill out Daily)

Permission is hereby provided to all participants of this course delivered by Gerard Meszaros to print this
material for their own personal use during and after the course.

Testing for Developers – With JUnit

2016 Gerard Meszaros Page 1 of 3

JUnit 4 & Java/Eclipse-Specific Instructions
Note: Please read before starting first exercise. Note which exercises have Java-specific instructions.
Read the Java-specific exercise instructions before starting the corresponding exercise.
JUnit 4 Notes:
Annotations used in JUnit 4 tests:
Identifying Tests:
@Test – makes a method into a test method.
@Test(expected=Exception.class) – to make it an ExpectedException test without using a try/catch inside

the test method body.
@Parameters – used to specify the method that provides the dataset for a Parameterized Test. JUnit will

create an instance of the TestCase Object for each entry in this dataset and will then run all
methods marked @Test on each of those TestCase Objects.

Managing Test Fixture:
@Before – runs the method before each @Test method. Used for setting up the test fixture. (Fresh Fixture)
@After – runs the method after each @Test method whether it passes or fails. Useful for tearing down the

test fixture. (Fresh Fixture)
@BeforeClass – runs the method once before all the @Test methods on the test class. Used for

SuiteFixture SetUp of a Shared Fixture.
@AfterClass – runs the method once after all the @Test methods on the test class have been run. Used for

SuiteFixture TearDown of a Shared Fixture.
Test Suites:
@RunWith(Suite.class) – Specifies the test runner to use with the test class. Can be Suite or something

else.
@Suite.SuiteClasses({… }) – Used to specify the classes that belong to the test suite. Use with

@RunWith(Suite.class).

See Eclipse-specific instructions on the following pages.

Testing for Developers – With JUnit

2016 Gerard Meszaros Page 2 of 3

Eclipse Notes:
To load each exercise in Eclipse:

1. Select File -> Import from the toolbar.
2. Select “Existing Project into Workspace” in the first import wizard
3. Click “Browse” and locate the particular exercise directory. Click “OK”. Each exercise directory

has an Eclipse project file (.project) that informs Eclipse of all libraries and source files to load.
To run all the tests in a JUnit test class:

1. Ensure you are in the “Java” perspective. If not, select Window->Open Perspective->Java
2. Select the particular JUnit Test class you want to run in the Package Explorer.
3. Click the icon with a running man. A drop down menu appears and select Run as -> JUnit test.

Or:
4. Right-click on the class name in either the Project Explorer or the inside the code window.

To run a single test in a JUnit test class (one @Test method):
1. If you have run the whole class, right-click on one of the individual test results in the JUnit

window and select Run.
2. You can also right-click on an @Test method name in the code window and select Run as -> JUnit

test.
To view the console output (Exercise 6):

If the console window is not already visible on a tab in one of the panes within the Java perspective,
1. Select Window->Show View->Console

To get a list of methods available on a hidden (e.g. the SUT) class:
1. Create a variable with the type of interest.
2. Use the variable in a statement followed by “.” (dot).
3. Press <ctrl><spacebar> to see a list of methods and attributes visible in the current scope. (Be

patient; it may take a few seconds to initialize the first time.)

See language-specific instructions for some exercises
on the following pages.

Testing for Developers – With JUnit

2016 Gerard Meszaros Page 3 of 3

Exercise-Specific Language-Specific Instructions
This section contains language-specific instructions for some of the exercises to augment the generic
exercise instructions. Please refer to the appropriate exercise instructions and come back here when it says
“Please refer to the Language-specific instructions”.

Exercise 6 Eclipse/JUnit4-specific Instructions:
Running a Test Suite Several Times in a Row:
To simulate persistence between test runs we use a JUnit4 test suite to run the test classes several times in
the same test run because the JUnit plug-in for Eclipse automatically reloads the SUT classes before every
run. o select RunTests_Twice.java in the Package Explorer. o select Run As -> JUnit Test from the Run menu or from the context menu.
Note that there is a bug in JUnit/Eclipse that causes the results to display strangely in the JUnit4 GUI, so
look in the console to see what’s really happening each time the tests are run.

Exercise 8 Eclipse-Specific Instructions:
Installing MockMaker within Eclipse:

1. Copy the zip file from the common directory or download the plug-in from
http://www.mockmaker.org/.

2. If Eclipse is open, close it.
3. Unzip the contents into the ECLIPSE_HOME/plugins directory, where ECLIPSE_HOME is the

directory containing eclipse executable.
4. Start Eclipse.

Using MockMaker within Eclipse:
1. Ensure MockMaker plugin is installed
2. Open the Java Browsing Perspective
3. Select the package com.xUnitPatterns.ex8.
4. Select the interface AuditLog. Right-click and select MockMaker->Select Package,

pointing to the com. xUnitPatterns.ex8.student.test package. This will create a
class called MockAuditLog.java.

5. Repeat step 5, replacing the AuditLogTestSpy with your new MockAuditLog.

Testing for Developers – With NUnit

2018 Gerard Meszaros NUnit CheatSheet - Page 1 of 5

.Net Language-Specific Instructions
Note: Please read first section (up to Exercise-Specific Notes) and scan the last section before starting first
exercise. Then use as reference thereafter while doing the exercises.

General Notes:
Some .Net programming idioms are not followed to keep the .Net version of the course in sync with other
languages. For example, some method names start with lower case letters, some test methods start with the
word “test” even though the [Test] attribute is what identifies the method as a test to NUnit, and some
properties are be directly accessible as Xxx = abc even though the notes refer to setXxx() or getXxx()
methods.

Visual Studio Add-ins and Add-ons

Resharper
Resharper is a Visual Studio plug-in that adds many capabilities to the basic set provided by VS. Of most
relevance to this course is the ability to run NUnits from the context menu on Projects or Classes, and to do
extensive, safe, automated refactoring of your test and product code.

One drawback of Resharper from the perspective of this course is how it handles console output from tests.
In a nutshell, terribly. This makes it misleading when running the tests in Exercise 6 where console output
is used to help us visualize the execution of various parts of each test.

A 30-day trial version can be installed via Tools->Extensions and Updates.

TestDriven.Net
TestDriven.Net is a Visual Studio plug-in that lets you run tests by right-clicking on a Project or a Class in
the Solution Explorer or a class name or method name in the source code itself. Also can be used to launch
NUnit GUI (and other installed test frameworks) by right-clicking on the project and selecting Test With …
NUnit.
A trial/personal version can be downloaded from http://TestDriven.net and activated via Tools->Add-in
Manager…

NUnit GUI:
You can use the NUnit GUI to run tests and see the green bar/red bar from outside VS. It is also required
for several of the steps in Exercise 6 because it allows control over whether the assembly is reloaded each
time the tests are run.
Most of the exercises depend only on NUnit 2.2.8; a few depend on newer versions for specific capabilities.

NUnit Test Adapter
This Visual Studio extension by Charlie Poole (head maintainer of NUnit) lets you run NUnit tests from
within VS. To use it, install it via Tools->Extensions and Updates and then open the Test Explorer window
via Test->Windows->Test Explorer. It is most useful if you group the tests by project. This allows you to
view or run all the tests in one project at the same time. Unlike the ReSharper plugin, it does provide a
useful console output for the whole test run (essential in Exercise 6.)

NUnit Notes:

NUnit 2.x Attributes:
In C#, attributes are enclosed in square brackets (e.g. “[“ and “]”)

Testing for Developers – With NUnit

2018 Gerard Meszaros NUnit CheatSheet - Page 2 of 5

In VB.Net, attributes are enclosed in “pointy” brackets (e.g. “<“ and “>”)

Identifying Tests:
[Test] – Marks a method as being a test.
[TestFixture] – Marks a class as containing tests (optional).
[ExpectedException(typeof(Exception), "expected Msg")] – Marks a test method as expecting an
exception as the correct result

Managing Test Fixtures:
[SetUp] – Marks a method as contain code to be run before each test method.
[TearDown] – Marks a method as contain code to be run after each test method.
[TestFixtureSetUp] – Marks a method as contain code to be run before first test method.
[TestFixtureTearDown] – Marks a method as contain code to be run after last test method.

Test Suites:
NUnit automatically creates a test suite for each namespace and assembly so we don’t have to create them
manually. When run from ReSharper or the NUnit GUI, this structure becomes very visible.

Visual Studio.Net Notes:

To load each exercise in Visual Studio.Net:
1. Navigate to the exercise folder (ie. Exercise-01).
2. Double-click on the .sln file (ie. Exercise-01.sln). This will launch Visual Studio.Net and load the

project.
Or, you can launch AllCSharpExercises.sln which loads all the exercises and a project containing the
CourseMetaTests. When run, these should all pass.

To run an NUnit test:

Using Resharper
These instructions assume that the Resharper Ultimate Visual Studio extension is installed on your
workstation.

1. In the solution explorer right-click on the Project or Test Class you wish to run. You will see an
option to Run Unit Tests… The output will be shown in the Unit Test Sessions window.

2. You can debug your tests by choosing the Debug Unit Tests option.

Using TestDriven.net
These instructions assume that the TestDriven Development.Net visual studio.net add-in is installed on
your workstation.

1. In the solution explorer right-click on the test you wish to run. You will see an option to Run-
Test(s)…

2. You can debug your tests by choosing the Test With… Debugger option

Using the NUnit GUI Directly
You can also launch the NUnit GUI from the Start Menu and then open the DLL for the project (called
ExerciseXx. located in the bin/debug folder. NUnit GUI should automatically reload the DLL / assembly
whenever VS rebuilds it (unless you tell it otherwise via options/preferences)

NUnit 2.2

Testing for Developers – With NUnit

2018 Gerard Meszaros NUnit CheatSheet - Page 3 of 5

Open the DLL containing the tests (usually called Exercise-XX-Test.dll) using Open…

NUnit 2.4
Open the DLL containing the tests (usually called Exercise-XX-Test.dll) using Open Project

Extracting Methods
Resharper support the Refactor->Extract-Method refactoring.(<ctrl><r>, <ctrl><m>. If you select one or
more entire states and invoke Extract Method, it will try to turn all that code into a single method call. It
will determine what it needs to pass in as arguments and what it needs to return (only works if one variable
assigned in the statements is used later.) However, it will not extract all instances of that code
automatically. To do this, you need to use:

Finding and Replacing Code Using Patterns

Select all the code you want to find (and possibly replace) and use Resharper->Find->Search with pattern.
It will present you with it’s best guess at the pattern you are looking for (you can modify it if you want).
And you can also click on the “Replace” button in the top right corner of the dialo to change it to Replace
mode. When you click on the Find or Replace button at the bottom of the dialog, it will give you a list of all
the places in the code it found the pattern. If you double-click on one, it will position to code window to the
matching chunk of code and you can unselect any chunks you don’t want changed. Then hit the “Replace”
button (yes, this is the 3rd “Replace” button in a row!) and all the changes will be made.
This isn’t quite as good as Eclipse’s “Replace x additional occurrences of statements with method” check
box; hopefully a future version of Resharper will do this automatically for us.

Exercise-Specific Notes
This section contains language specific instructions for some of the exercises to augment the generic
exercise instructions. Please refer to the appropriate exercise instructions and come back here when it says
“Please refer to the Language-specific instructions”.

Exercise 6 Notes:

All Steps: Viewing the console output from the tests:
To provide insight into what goes on under the covers, the tests for Exercise 6 are instrumented with
Console.WriteLine statements in each method in the test class plus key methods in the system-under-test
(SUT). The best way to see this output is to:

 Run the tests using the NUnit GUI and click on the Console Out or Test Output tab in the right
pane.

 Another option is to use the NUnit Test Adapter and the Test Explorer window.

Testing for Developers – With NUnit

2018 Gerard Meszaros NUnit CheatSheet - Page 4 of 5

Note that Unit Test Sessions window of ReSharper does show the console output for one test at a time
but there is no easy way to see the output for the entire test suite in one place.

Step 2: Running the tests more than once in a row:
To do this, we need to use the standalone NUnit test runner:

 Start the standalone NUnit test runner
 from StartMenu->Program->NUnit->NUnit GUI then open the DLL using File->Open…

and select Exercise-06-Test.dll in the bin/debug directory.
 Using TestDriven.Net by right-clicking on the project and selecting Test With-> NUnit

2x
 Note: If you get an error when opening the DLL, make sure you are using the same .Net

Framework version in your test exercise project as the NUnit GUI is using (probably
V2.0)

 Run the tests to verify you get the same results as when running from inside Visual Studio.
(Optional)

 In the standalone NUnit TestRunner GUI, uncheck the “Reload before every run” checkbox.
 In NUnit 2.0 it is in Tools->Options->Tests->Reload before each test run
 In NUnit 2.4 it is in Tools->Options->Test Loader->Assembly Reload
 In NUnit 2.6 it is in Tools->Settings under TestLoader category

 Run the tests in the FlightManagementFacadeTest class. What Happens? Why?

 (Hint: look at the output in the Console.Out tab of the NUnit GUI.)

Note: If you get an error when opening the DLL, make sure you are using the same (or lower) .Net
Framework version in your test exercise project as the NUnit GUI is using (e.g. V2.0)

Exercise 8 Notes:

Installing Easymock.Net for use with Visual Studio.Net:
1. If the DLL files for Easymock.net are not in the bin folder at the root of the course project folder

then download the current build zip from the following site:
http://sourceforge.net/projects/easymocknet/ and unzip this file to a folder on the workstation.

2. To add the Easymock assembly to your project right-click on your reference tab and choose Add
Reference…

3. In the Browse tab navigate to the folder where you performed the unzip. Locate the .dll files and
press select. It should now appear in the Selected Components table below. Press OK.

4. You should now able to use Easymock.net.

Testing for Developers – With NUnit

2018 Gerard Meszaros NUnit CheatSheet - Page 5 of 5

Please note: This step has been done and the Easymock.net dll files are located in the bin folder at the
course project root folder.

Other Popular .Net Mocking & Stubbing Frameworks
NMock is another dynamic mocking framework. More information can be reached at
http://www.nmock.org. RhinoMock is also popular. See http:// http://ayende.com/projects/rhino-
mocks.aspx. MbUnit has some useful features not found in most other members of the xUnit family. See
http://www.mbunit.com for details.

Exercise-Specific Result Explanations
The following describe some language-specific nuances of the provided results and what you may have
observed during the exercises.

Exercise 6 Results
Two different result solutions are provided. One illustrates the overall result while the other shows the
results using the SuiteFixture Setup approach using the [FixtureSetup] and [FixtureTeardown] attributes.

Testing for Developers – With XUnit

2015 Gerard Meszaros Exercise 1 - Page 1 of 3

Exercise 1 Instructions
Note: Please read right to the end before starting!
Purpose
To become familiar with creating xUnit tests in the available development environment
System Description

The airline management system we are building contains the following class:

The items in the middle compartment are properties
 Java, C++: These are accessed using setter and getter methods
 C#, VB.Net: These are accessed as properties (fields and assignment.)
The items in the bottom compartment are operations.

Flight
SeatingCapacity
NumberOfSeatsAvailable
schedule()
approve()
deschedule()
requestApproval()

Testing for Developers – With XUnit

2015 Gerard Meszaros Exercise 1 - Page 2 of 3

Each flight has the life-cycle described in the following state diagram:

UML Legend:

 Ovals represent states. Arrows represent transitions between states. The name of the method or function that causes the
transition is shown on the arrow. If the function takes an argument, it is shown in parenthesis as in
“approve(approverName)”. The black spot at the bottom of the diagram is the starting state. On construction, the object is
immediately placed into the state at the end of the arrow (“unscheduled”).

The following describes additional requirement constraints:

1. The property NumberOfSeatsAvailable is valid only when the flight is in the scheduled state and
will return 0 or more available seats. In all other states, it throws an InvalidRequestException. The
number of seats defaults automatically or it can be specified by setting the SeatingCapacity
property. Java/C++: Access these properties using the setXxx() and getXxx() method/member function. C#/VB: Access these properties using “dot notation” (e.g. y.Xxx).

2. A flight can only be approved by the flight coordinator whose name is “Fred”. If anyone else tries

to approve a flight, the approve method should throw an InvalidArgumentException.
3. All other operations are valid in all states with most exhibiting the same behavior in all states.

Testing for Developers – With XUnit

2015 Gerard Meszaros Exercise 1 - Page 3 of 3

Your Mission:
Write a set of unit tests for the NumberOfSeatsAvailable property.
(NB: Do not write tests for any other methods at this time! We will do that in Exercise 3.)
At your disposal:

 A test project already set up containing all the relevant resources including:
 An executable library (Jar, Assembly, Lib etc.) containing all relevant classes. You will not have

access to the source until a later exercise.

 An xUnit test class called Exercise1TestCase. This class contains a single test method
test1() that fails (intentionally).

 A helper class called FlightTestHelper with convenient methods for creating flights in various
states.
 o Hint: You can use the “name completion” feature of the development environment (IDE)

to discover the available methods. See the language-specific “Cheat Sheet” if you don’t
know how to do this in your IDE.

To Do:
It will be helpful during the exercise debrief to take note here while doing each step.

1. Open the project “Exercise-01” and run Exercise1TestCase. Verify that it runs a single test

with a single failure. Refer to the language-specific Cheat Sheet for the language and IDE you are using for
details of how to run the test and other useful tips & tricks.

2. Define the test conditions of the NumberOfSeatsAvailable property that you need to verify.

3. Modify the test method to test at least one of these conditions.

4. Add additional test methods to test other conditions you identified. Recall: we are only testing this one method at this time.

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 2 - Page 1 of 1

Exercise 2 Instructions
Purpose
Practice identifying test conditions and test cases based on a UML description of an entity class.
System Description
See Exercise 1.
Your Mission:
Define the test conditions, test scenarios and test cases for the Flight class. You will use these when writing xUnit tests for the Flight
class in the next exercise.
At your disposal:
The description of the system provided for Exercise 1.
To Do:

1. Identify the test conditions you need to test. Make sure you test each state transition of the Flight class. Make sure you test each public method of the Flight class. Make sure that you are trying various values for any method arguments. Use boundary values between equivalence
classes to keep the number of values manageable. Make sure that you are trying each method in each state. Make sure you have identified the expected outcome for each test condition.

Were you able to come up with a systematic way to ensure all the test conditions were identified? How?

2. What are the equivalence classes of the test conditions?

3. Define the test cases you need to verify these test conditions.

4. Did you notice any similarities between the tests? What was similar? How could you organize the test code to take advantage
of the similarities?

5. If you have time review the Exercise-02-Result document (available in PDF format.)

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 3 - Page 1 of 1

Exercise 3 Instructions
Purpose
Gain experience automating the test conditions you have identified as test cases.
System Description
See Exercise 1.
Your Mission:
Based on the test conditions, test scenarios and test cases you identified for the Flight class in the previous
exercise, create a complete xUnit test suite to verify the functionality. Make sure you follow the style
guidelines.
At your disposal:

 The description of the system provided in Exercise 1. A predefined project called “Exercise-03” configured to interact with the executable containing
the Flight class. Some starting tests for getNumberOfSeatsAvailable (which are the same as Exercise-01-Solution.) The test conditions and test cases you identified in Exercise 2 (or you may choose to start with the
test conditions in Exercise 2 Results.pdf.)

To Do:
1. Open the project for Exercise 3.

2. Run the tests in the FlightTest test class and verify it has 3 successful tests and no failures.

3. Add additional test methods to automate each of the test conditions you identified in the last

exercise.

4. Run your tests frequently to gauge your progress.

5. Refactor the tests into several test classes to group tests with common attributes. Which approach
seems to be the best choice? And why?

6. If you have time, load and review the Exercise-03-Result project to see several ways to organize
and name these tests. Record your reactions and impressions here:

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 4 - Page 1 of 2

Exercise 4 Instructions
Purpose
Practice identifying component test conditions and test cases based on a use case of the component and the component dependencies.
This is a paper exercise (no code will be written, yet.)
System Description
The functionality of the system is described in the following use case: Find Flights From Airport

The system has been partitioned into a presentation component (not discussed here) and a façade that encapsulates all the business
logic of the system and is used by the user interface for all functionality. Refer to the interface definitions in the code for details of the
API.

The following class diagram summarizes the interface of the API façade class.

 The FlightDto class is used to return information about flights within the system. The system does not return the actual flight
objects that may or may not exist inside the system. The class FlightManagementFacadeImpl implements this interface and
will be our system under test.

FlightManagementFacadeImpl depends on the FlightDataAccess component. When requested to find the flights that
match a certain criteria, the FlightDataAccess component will either return a list of matching objects or it will throw a
DataAccessException that describes the nature of the problem (e.g. database unavailable, undefined, etc.) Note that we are not
testing the functionality of t he FlightDataAccess component here so it can be replaced if necessary.

FlightManagementFacade
createAirport()
createFlight()
findFlightsByOriginAirport()
removeAirport()
removeFlight()

FlightDto
getDestinationAirportId()
getDestinationCity()
getEquipment()
getFlightNumber()
getOriginCity()
getOriginAirportId()

returns

FlightBookingException

IllegalRequestException

throws

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 4 - Page 2 of 2

Your Mission:
Define the test conditions, test scenarios and test cases for the FlightManagementFacade. (You will use some of these when writing
xUnit tests for the FlightManagementFacade class in Exercise-05A.)
At your disposal:

 The description of the system provided here including the use cases. The interface definition for the system façade in Exercise 5.
To Do List:

1. Read the Use Cases.
2. Open the Exercise 5 project and review the interface definition for the FlightManagementFacade.
3. Start by identifying the test conditions for the getFlightsByOriginAirport method.

(Hint: what are the various states that the system-under-test can be in? How does this affect the expected results of this
method? What are the corresponding direct inputs? Indirect inputs?)

4. What are the equivalence classes (different kinds of outcomes) for the test conditions?

(Hint: what are the various kinds of expected results of this method? What are the Givens and direct inputs (Whens) that
would result in them? What are the Indirect inputs?)

5. Define the test cases you need to verify these test conditions.

6. If you have time, define test conditions for the other methods. Check to see which ones are already covered by the tests for
getFlightsByOriginAirport. Define any new tests cases you need to cover these test conditions.

7. If you have time, review the Exercise 4 Results document in (available in PDF format.)

Testing for Developers – With xUnit

2015 Gerard Meszaros Page 1 of 1

Use Case - Find Flights From Airport
Goal:
The user wants to find flights that are departing from a particular airport.
Initiating Actor:
End User or Travel Agent
Other Actors:
None Scope:
System = Flight Management System
Trigger:
User requests information about flights
Success Scenario:

1. User requests a list of flights departing from a particular airport.
2. System verifies that the requested originating airport is valid.
3. System retrieves all the flights that show that airport as the origination point.
4. System displays information about the found flights to the user. The information

includes departure city, destination city, flight number, departure time, arrival time
and type of equipment.

Alternate Scenarios:
The following scenarios branch off from the main scenario at the indicated step

2a. Airport code is invalid
1. The system informs the user of the error (airport code was invalid)
2. Use case ends in failure; the user’s goal is not achieved.

4a No flights are found
1. The system displays “You can’t go anywhere from there! Try the bus.”

Related Use Cases:
Flights are defined using the Create Scheduled Flight use case.

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 5a - Page 1 of 1

Exercise 5a Instructions
Purpose
Practice automating functional test conditions and test cases using intent-revealing assertions.
System Description
The functionality of the system is described in Exercise 4.
Your Mission:
Improve the assertion logic in the tests for the getFlightsByOriginAirport method.
(Leave the fixture setup logic as it is.)
At your disposal:
The description of the system provided in Exercise 4.
An initial set of tests for the system façade. These tests are convoluted and have complex assertion logic inline.
To Do List:

1. Review the Exercise 4 results. (Optional)
2. Open the project for Exercise-05a.
3. Run the xUnit test class, FlightManagementFacadeTest, to verify it has been installed correctly. What happens?

4. Review the provided FlightManagementFacadeTest. What problems do you see or smell?

5. Identify any additional test cases needed to cover the test conditions for the system.

6. Try replacing the sequence of assertions used to verify the fields of the FlightDto with a single call to assertEquals()

and an “expected object”. What happens?

7. Identify chunks of duplicated test code in the verification part of the test that might be refactored into custom assertions. Try

using the “comment elimination technique.” (Ignore the fixture setup logic as that will be the subject of Exercise 6.)

8. Refactor the existing tests to use the custom assertions you defined.

9. Use these custom assertions to automate the missing tests.

10. If you have time, write tests for the custom assertion.

11. If you have time, load and review the Exercise-05A-Results project (in your IDE.) Record your thoughts here:

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 5b - Page 1 of 2

Exercise 5b - Setup Instructions
Purpose
Practice making test condition “given”s visible by using intent-revealing fixture setup.
System Description
The functionality of the system is described in Exercise 4.
Your Mission:
Improve the fixture setup logic in the tests for the getFlightsByOriginAirport method. The goal
is to make the givens of each test easy to understand by reading the first few lines of each test method. This
should also reduce the overall amount of code and make it easier to write new tests by reducing the amount
of code needed for each new tests.
At your disposal:
The description of the system provided in Exercise 4.
The tests and test utilities you created in Exercise 5a and the tests and test utilities in Exercise-05a-Result.
For your convenience, the latter have already been copied into the project for Exercise-05b.
To Do List:

1. Open the project for Exercise-05b.
2. Review the provided GetFlightsByOriginAirportTest class. What problems do you see

or smell?

Run the tests to see what happens.

3. Start with a simple cleanup refactoring: In method withOneOutboundFlight_... extract a

method called givenAFlightDto from the existing fixture setup code to create the DTO. (The
other tests already call a similar method but this will give you practice in creating such method via
refactoring.)

What got in the way on your first attempt?

(Hint: Fields and Constants are not passed into methods when we extract them; you may need
to extract a local variable first to force it to be passed; you can inline the variable after the
refactoring.)

4. Review the test conditions from Exercise 4. Think about how you could make the given part of
test conditions obvious using Creation Methods. What Creation Methods would make this easy to
do? (Aim for just one method per flight; that is, a test that requires 2 flights should only have 2
lines of fixture setup.)

What information do you need to pass to the creation methods from a previously created flight?

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 5b - Page 2 of 2

What could you call the variables that hold the result to make it easier to understand what role the
newly created test object plays in the test?

5. Try “roughing in” a few new tests for the missing test conditions (such as “sightseeing flight” and

“2 flights on same route”) using your proposed utility methods. (You don’t need to implement the
bodies of the utility methods at this point; just the signatures.)

6. Now try refactoring the existing tests to create these utility methods. What refactoring steps will

make this easier? (You may need to delete the existing signatures you created in the last step if
your IDE’s refactoring tools object to them.)

7. Pretend you have another test class somewhere else in the system from which you would like to

reuse some of these custom assertions and creation methods. Refactor your classes so that this
other test class could use these methods without having to subclass the class AbstractFlightManagementFacadeTestCase.

8. Review all your tests paying particular attention to how well the test class and method names

combine to articulate which test condition each test method verifies. If the class.method names
don’t provide a succinct summary of the test condition (all 3 parts: Given-When-Then) then try
renaming either the class, the method or both to do so.

Which style of test class organization did you choose? Testcase Class per Class, Testcase Class
per Feature, or Testcase Class per Fixture?

9. If you have time, write tests for the custom assertion(s) and creation method(s) you created.

10. If you have time, read the Exercise 5b Results PDF document and open the project Exercise-05b-

Results and review the class
GetFlightsByOriginAirportTest_3_FullyRefactored and compare it with what
you came up with.

11. If any of the refactorings didn’t go smoothly, go back and try them again. You may choose to start

with partially refactored classes in Exercise-05-Setup-Result project:
GetFlightsByOriginAirportTest_1_InlineUniqueIdsForAirports and
GetFlightsByOriginAirportTest_2_AnonymousAirportCreationMethods and
extract Anonymous Creation Method(s) for creating the Airports. (Working backwards from the
result may make it more obvious to you what “refactoring chess moves” to make.)

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 6 - Page 1 of 5

Exercise 6 Instructions
Purpose
Explore various ways of doing test fixture setup and teardown. Understand how the various setup and teardown mechanisms provided
by xUnit work. Experience the impact of the two main choices of fixture strategy: Shared versus Fresh Fixtures.
System Description
Four tests exist for the getFlightsByOriginAirport façade method (in the FlightManagementFacadeTest). Each of these tests expects a
certain number of airports and flights as part of their test fixture (the name of the test and the specific helper create methods used
indicate what is needed by each test).
Your Mission:
Identify and remove the bad smells that exist in the fixture setup and teardown of the tests for the getFlightsByOriginAirport method.

Please follow the detailed instructions on page 2 to get the maximum value from this exercise.
So that the instructor(s) don’t need to bother you, please tick off each item as you complete it.

At your disposal:
 The description of the system provided here including the use cases. The library (lib or JAR) containing the system façade (hint: use your IDE to see what methods it supports.) An initial set of tests (FlightManagementFacadeTest) for the system façade. A FlightManagementTestHelper class with some useful methods on it: A method to create all standard airports and flights A method to remove all airports and flights Methods to return the expected flights for different kinds of airports Methods to create airports and flights with airport codes guaranteed to be unique A pre-built mechanism for setting up a Shared Test Fixture. See the Language-Specific Instructions for details

 FlightManagementTestSetup decorator and a test suite (AllTests)that installs the decorator for you.
 Messages written to the Console to show you what is happening behind the scenes including calls to: setUp testMethods tearDown etc.

See page 2 for the list of things to do
Note: Some find it useful to do each step in a different class. This allows you to retry a previous step without having to undo any
changes. There are two strategies for doing this:

1) Copy and rename the class for each subsequent step.
2) Or starting in step 2, move the setup/teardown methods to a subclass of FlightManagementFacadeTest and copy/paste just

that class for each step
JUnit4, NUnit: Just do Run ... Test on a different subclass of FlightManagementFacadeTest. (You would have to duplicate or modify
RunTests_Twice, though.) Using Eclipse or Resharper, you can do Refactor->Extract SuperClass to create a NoFixture superclass
from which you can then create subclassed test classes. Simply select the 4 test methods and give the new super-class a suitable name.
CppUnit: You’ll need to do this manually, create a new project for each step and create the subclass in that project. You’ll also need
to create a new module with a main() function,

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 6 - Page 2 of 5

To Do List:
Please follow these instructions EXACTLY, checking off each step as you finish it. Takes notes about what you observe in the spaces
provided as we will be discussing what you observed (and why) at each step during the post-exercise discussion.

1. Install the Exercise 6 starting point
 Open the project for Exercise 6.
 Rerun the tests (in FlightManagementFacadeTest) to verify they have been installed correctly. Some of the tests

should fail because the system now remembers airports and flights. How many fail? o
 Review the provided test cases to see why they are failing o Hint: look at the output in the Console; refer to the language-specific Cheat Sheet for how to see the console. o o
 Try running each of the test methods individually. What happens? o Java, C#, VB: There are several ways to do this described in the language-specific Cheat Sheet. o C++/CppUnit: There is no way to do this without using the CppUnit GUI (which we aren’t using.) You’ll need to

comment out all but one of the test registration macro calls... o o
 What behavior smell are you encountering? o o

2. Try moving the Standard Fixture setup from within each test into the setUp method on the
FlightManagementFacadeTest class.
 Move the call to setupStandardAirportsAndFlights into the previously empty setUp() method on your

FlightManagementFacadeTest class.
o (Do not put anything into tearDown() yet.)

 Run the tests. Does this solve the problem? Why or why not? o o
 What behavior smell are you encountering? o o
 Run the tests several times in a row. o NUnit:

 We need to use the standalone NUnit GUI test runner to run the test assembly several times without
reloading it. There is an option “Reload before each test run” which we need to deselect. Please refer to
the language-specific instructions. o JUnit4:

 To simulate persistence between test runs we use a JUnit4 test suite to run the test classes several times in
the same test run because the JUnit plug-in for Eclipse automatically reloads the SUT classes before every
run.
- select RunTests_Twice.java in the Package Explorer.
- select Run As -> JUnit Test from the Run menu or from the context menu. o CppUnit:

 To simulate persistence between test runs we include the FlightManagementFacadeTest test class twice in
a test suite that runs the test classes several times in the same test run. To avoid having to edit the main()
function between each test run, we have included the FlightManagementFacadeTest in another project with
the appropriate main() function called Exercise-06-RunTwice:
- select Exercise-06_RunTwice project in the Solution Explorer and make it the startup project.
- Use <ctrl><F5> to run the tests.

 What happens? How many tests are being run? Does each test have the same results the second time it is run?
(Compared to the first time it is run from the RunTwice project.) Why not? o o o Hint: look at the output in the Console o JUnit4: Watch out for the JUnit reporting bug causing confusing output in the JUnit Window.

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 6 - Page 3 of 5

o NUnit: Reload the tests in the GUI manually to see how they behave the first time they are run.
 What behavior smell are you encountering? o o

3. Try building a Shared Fixture using the SuiteFixture Setup approach (which runs the setup code only once for the all the test
methods on a testcase class.) o CppUnit: Skip this section as CppUnit does not support SuiteFixture Setup. Resume at step 3C.

 Add the call to setupStandardAirportsAndFlights into the one-time SuiteFixtureSetUp method and

run the tests. (Do not put anything into the one-time SuiteFixtureTearDown method yet.)
o NUnit: We can run setup code once per class by moving the call to setupStandardAir…s method into the

oneTimeSetup method which has the [TestFixtureSetup] attribute. Note: You may have to access the
setupStandard… method statically (via the classname FlightManagementTestHelper.) o JUnit4: We can run setup code once per class by moving the call to setupStandardAir…s method into the
oneTimeSetup method which is annotated with @BeforeClass. Note: You may have to access the setupStandard…
method statically (via the classname FlightManagementTestHelper.)

 What happens? o o o
 Remove the setupStandardAirportsAndFlights from the setUp method of

FlightManagementFacadeTest (if you haven’t already done so.) Any better? How many tests are being run?
o o o

 Run the test suite several times in a row from the same test runner. o NUnit: Run the tests several times in a row using the standalone NUnit GUI.
o JUnit4: Run the tests via the class RunTests_Twice

 What happens? Do you get the same results the 2nd (and subsequent runs) as the first run? Why? How many tests are
actually being run? o o o o Hint: look at the output in the Console. o JUnit4: Watch out for the JUnit reporting bug causing confusing output in the JUnit Window.

 Try running a single test from within FlightManagementFacadeTest o See the Cheat Sheet for how to do this..
 What happens? o o o

 3c. Try running the setup code just once using a Test Setup Decorator o NUnit: Skip this section; NUnit doesn’t support Decorators. Instead, use the SetupFixture approach described in 3d.

 Add the call to setupStandardAirportsAndFlights into the setUp() method on

FlightManagementTestSetUp and run the tests. (Do not put anything into the tearDown() method yet.)
o JUnit4: While JUnit4 doesn’t support Decorators, you can use the JUnit3-based TestSetup decorator provide in the

class FlightManagementTestSetup. You can run it by using the provided RunTestsDecorated class:
i. select the class RunTestsDecorated.java in the Package Explorer.

ii. Select Run As-> JUnit Test from the Run Menu or the context menu. o CppUnit: To run setup code only once per class, we need to use a TestSetupDecorator. You can add the call to
setupStandardAir…s to the setUp function in the class FlightManagementTestSetup.cpp in the project Exercise-06-
Decorated and make it the startup project.

 What happens? o o o

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 6 - Page 4 of 5

 JUnit4 only: Remove the setupStandardAirportsAndFlights from the SuiteFixtureSetUp method of
FlightManagementFacadeTest (if you haven’t already done so.) Any better? How many tests are being run?
o o o

 Run the test suite several times in a row from the same test runner.
o JUnit4: Run the tests via the class RunTests_Twice
o CppUnit: Run the tests via the class RunTests_Decorated_Twice in the project Exercise-06-Decorated-

Twice
 What happens? Do you get the same results the 2nd (and subsequent runs) as the first run? Why? How many tests are

actually being run? o o o o Hint: look at the output in the Console. o JUnit4: Watch out for the JUnit reporting bug causing confusing output in the JUnit Window.
 Try running a single test from within FlightManagementFacadeTest o JUnit4: See the Cheat Sheet for how to do this. o CppUnit: Sorry, no way to do this easily! So try running the whole FlightManagementFacadeTest without using the

Decorator.
 What happens? o o o o

3d. Try running the setup code just once using a Setup Fixture [NUnit]
NUnit Only: JUnit/CppUnit Skip this section;

 Open the project Exercise-06-Step3d SetupFixture.
 Review the class FlightManagementTestSetUp.
 Run the tests in the project using the NUnit GUI. (See NUnit cheat sheet for how.)
 Add the call to setupStandardAirportsAndFlights into the [SetUp] method on

FlightManagementTestSetUp and run the tests. (Do not put anything into the tearDown() method yet.) What
happens? o o o

 Remove the call to setupStandardAirportsAndFlights from the SuiteFixtureSetUp method of
FlightManagementFacadeTest (if you haven’t already done so.) Any better? How many tests are being run?
o o o

 Run the test suite several times in a row from the same test runner. o NUnit4: Run the tests via the GUI with “reload” unchecked.
 What happens? Do you get the same results the 2nd (and subsequent runs) as the first run? Why? How many tests are

actually being run? o o o o Hint: look at the output in the Console in the NUnit GUI’s “test output” tab. o Resharper: Watch out for the reporting bug causing confusing output in the Unit Test Sessions window.
 Try running a single test from within FlightManagementFacadeTest o NUnit GUI: Select individual tests or suites of tests (See the Cheat Sheet for how to do this.)
 What happens? o o
 Try cloning the FlightManagementTestSetUp class and change the namespace on it. (And change the text in the

WriteLine’s while you are at it.) Run the tests. What happens? o

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 6 - Page 5 of 5

o o

4. Try cleaning up the test fixture:
 Add the call to the removeStandardAirportsAndFlights() method of the Test helper in the tearDown()

method. o JUnit4: @After o NUnit: [TearDown]
o CppUnit: teardown() on FlightManagementFacadeTest

 What happens? Why? o o o
 Move the call to removeStandardAirportsAndFlights() to the one-time tear-down method. Now what

happens? o JUnit4:Annotated with @AfterClass o NUnit: [TearDown]attribute o CppUnit: Skip this step o o o
 JUnit4 & CppUnit only: Next, move the call to the tear-down method on the Test Setup Decorator

(FlightManagementTestSetup); Now what happens?
o o o

 Run the tests several times in a row. Now what happens? Why? o JUnit4: Run the tests via the RunDecorated_Twice class. o CppUnit: Run the tests via the RunDecorated_Twice project. o NUnit: Run the tests several times from the standalone GUI. o o o o Hint: look at the output in the Console
5. Try modifying the Shared Test Fixture:

 Add a call to TestHelper .addExtraFlights() into the setUp method used to set up the Shared Fixture.
o JUnit4, CppUnit: on FlightManagementSetup decorator o NUnit: In the SuiteFixtureSetup method

 What happened? Why? o o o
 What behavior smell are you encountering? o o

6. Try out the Fresh Fixture with Unique-Ids approach:
 Change the tests to call the corresponding FlightManagementTestHelper.createXnn() instead of

findXxx().
 Run the tests the same way you ran them in Step 5. Do some tests still fail? Why? o o o
 Run them several times in a row from the same TestRunner window. What happens? o o

7. If you have time, load and review the Exercise-6-Results projects (in your IDE.) Record your thoughts here:

Testing for Developers – With xUnit

2010 Gerard Meszaros Exercise 6 - Page 1 of 4

Exercise 6 Instructions

Purpose
Practice various ways of doing test fixture setup and teardown. Learn when to use a TestSetup decorator or
SuiteFixture setup to manage a Shared Test Fixture. Understand the impact of choosing to use a Shared
versus Fresh Fixture approach to testing.

System Description
Four tests exist for the getFlightsByOriginAirport façade method (in the FlightManagementFacadeTest).
Each of these tests expects a certain number of airports and flights as part of their test fixture (the name of
the test and the specific helper create methods used indicates clearly what is needed by each test).

Your Mission:
Identify and remove the bad smells that exist in the fixture setup and teardown of the tests for the
getFlightsByOriginAirport method.

Please follow the detailed instructions on page 2 to get the maximum value from this exercise.
So that the instructor(s) don’t need to bother you, please tick off each item as you complete it.

At your disposal:
 The description of the system provided here including the use cases.
 The library (lib or JAR) containing the system façade (hint: use your IDE to see what methods it

supports.)
 An initial set of tests (FlightManagementFacadeTest) for the system façade.
 A FlightManagementTestHelper class with some useful methods on it:
 A method to create all standard airports and flights
 A method to remove all airports and flights
 Methods to return the expected flights for different kinds of airports
 Methods to create airports and flights with airport codes guaranteed to be unique

 A pre-built mechanism for setting up a Shared Test Fixture.
 See the Language-Specific Instructions for details
 FlightManagementTestSetup decorator and a test suite (AllTests)that installs the

decorator for you.
 Messages written to the Console to show you what is happening behind the scenes including calls to:
 setUp
 testMethods
 tearDown
 etc.

See page 2 for the list of things to do

Hot Tip: To make it easier to keep things straight, consider doing each step in a different class, or starting
in step 2, move the setup/teardown methods to a subclass of FlightManagementFacadeTest and copy/paste
that class for each step. This allows you to retry a previous step without having to undo any changes. Just
do Run As JUnit test on a different subclass of FlightManagementFacadeTest. (You would have to
duplicate or modify RunTests_Twice, though.) In Eclipse, you can do Refactor->Extract SuperClass to
create a NoFixture superclass from which you can then create subclassed test classes. Simply select the 4
test methods and give the class a suitable name.

Testing for Developers – With xUnit

2010 Gerard Meszaros Exercise 6 - Page 2 of 4

To Do List:
Please follow these instructions EXACTLY, checking off each step as you finish it. Takes notes about what
you observe in the spaces provided as we will be discussing what you observed (and why) at each step
during the post-exercise discussion.

1. Install the Exercise 6 starting point
 Open the project for Exercise 6.
 Rerun the tests (in FlightManagementFacadeTest) to verify they have been installed

correctly. Some of the tests should fail because the system now remembers airports and
flights. How many fail?
o

 Review the provided test cases to see why they are failing
o Hint: look at the output in the Console; refer to the language-specific instructions for

how to see the console.
o
o

 Try running each of the test methods individually. What happens?
o Hint: refer to the language-specific instructions for how to run tests individually.
o
o

 What behavior smell are you encountering?
o
o

2. Try moving the Standard Fixture setup from within each test into the setUp method on the
FlightManagementFacadeTest class.
 Move the call to setupStandardAirportsAndFlights into the previously empty

setUp() method on your FlightManagementFacadeTest class.
o (Do not put anything into tearDown() yet.)

 Run the tests. Does this solve the problem? Why or why not?
o
o

 What behavior smell are you encountering?
o
o

 Run the tests several times in a row.
o JUnit4: To simulate persistence between test runs we use a JUnit4 test suite to run the

test classes several times in the same test run because the JUnit plug-in for Eclipse
automatically reloads the SUT classes before every run.
- select RunTests_Twice.java in the Package Explorer.
- select Run As -> JUnit Test from the Run menu or from the context menu.

o Note that there is a bug in JUnit/Eclipse that causes the results to display
strangely in the JUnit4 GUI.

o Look in the console to see what’s really happening each time the tests are
run.

 What happens? On subsequent runs do you get the same results as the first run? Why?
o
o
o Hint: look at the output in the Console

 What behavior smell are you encountering?
o
o

3. Try using a Shared Fixture by running the setup code only once for the entire suite of tests.

Testing for Developers – With xUnit

2010 Gerard Meszaros Exercise 6 - Page 3 of 4

 Add the call to setupStandardAirportsAndFlights into the
SuiteFixtureSetUp method and run the tests. (Do not put anything into the one-time
SuiteFixtureTearDown method yet.)
o JUnit4: We can run setup code once per class by moving the setupStandard… method

into the oneTimeSetup method which is annotated with the @BeforeClass. Note: You
may have to access the setupStandard… method statically (via the classname
FlightManagementTestHelper.)

a) JUnit4: You can also run the setup code only once for an entire test suite by using the
JUnit3-based TestSetup decorator provided: the
FlightManagementFacadeTestDecorator. You can run it by using the provided
RunTestsDecorated class:

o select the class RunTestsDecorated.java in the Package Explorer.
o Select Run As-> JUnit Test from the Run Menu or the context menu.

 What happens?
o
o
o

 Remove the setupStandardAirportsAndFlights from the setUp method of
FlightManagementFacadeTest (if you haven’t already done so.) Any better?
o
o

 Run the test suite several times in a row from the same test runner.
o JUnit4: Run the tests via the class RunTests_Twice

 What happens? Do you get the same results as the first run on subsequent runs? Why?
o
o
o Hint: look at the output in the Console.

4. Try cleaning up the test fixture:
 Add the call removeStandardAirportsAndFlights method on the Test helper in the

one-time teardown method. What happens? Why?
o

 Run the tests via the decorator FlightManagementTestSetup.
o JUnit4: Run the tests via the class RunTestsDecorated

 What happens? Why?
o
o
o

 Make sure you have removed any setup from the decorated test class; now what happens?
o
o

 Run the tests several times in a row.
o JUnit4: Run the tests via the RunDecorated_Twice class.

 What happens? Why?
o
o
o Hint: look at the output in the Console

 Try running the tests without using the decorator
o JUnit4: Run FlightManagementFacadeTest class using Run As … JUnit Test. (It

will also be listed in your Test Run History menu.)
o C#/NUnit users can skip this step since SuiteFixture Setup is not enabled/disabled

dynamically.
o Run the tests the same way you ran them back in step 2.

 What happens? Why?
o .

Testing for Developers – With xUnit

2010 Gerard Meszaros Exercise 6 - Page 4 of 4

o
5. Try modifying the Shared Test Fixture:
 Add a call to TestHelper .addExtraFlights() into the setUp method used to set

up the Shared Fixture.
 What happened? Why?

o
 What behavior smell are you encountering?

o
o

6. Try out the Fresh Fixture with Unique-Ids approach:
 Change the tests to call the corresponding

FlightManagementTestHelper.createXnn() instead of findXxx().
 Run the tests without using the decorator.

o See the Language-Specific Instructions (A.K.A. Cheat-Sheet) if you cannot recall how to
do this.

 Do they still pass? Why?
o
o

 Run them several times in a row from the same TestRunner window. What happens?
o

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 7 - Page 1 of 2

Exercise 7 Instructions
Purpose

- To practice testing a component in isolation of any dependent components. In this exercise, the dependent component is a
source of indirect inputs.

- To identify the correct boundary conditions
System Description
The TimeDisplay component displays the current time in a string formatted in HTML. The following business rules apply to this
clock component:

1) At noon, it should return:

Noon

2) At midnight, it should return:

Midnight

3) During all other times, the component should return the time in the format:

hours:minutes AM/PM surrounded by the HTML tags. Some examples are shown below:

2:30 PM

12:02 AM

4) TimeDisplay will catch any exceptions that it receives and return the message text contained in the exception.

The system under test is called TimeDisplay, and the class diagram is shown below. TimeDisplay uses another component to
produce the actual time called TimeProvider.

Your Mission:
Test the method TimeDisplay.getCurrentTimeAsHtmlFragment(). Define the test conditions for this method.

At your disposal:
 The interface description for the system under test (the getCurrentTimeAsHtmlFragment method of theTimeDisplay class) and its

dependency (the getTime method of the DefaultTimeProvider class.) Note: In .Net, the interface used by the TimeDisplay class to access the current time is called ITimeProvider to comply with
.Net idioms.

 An initial set of Tests in the file TimeDisplayTest.java.

Default Time
Provider

Time Display Time Provider
<<Interface>>

get Time Provider

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 7 - Page 2 of 2

 A TimeProviderTestStub that allows you to set/get the hours and minutes using either the complete constructor or the
setTime method. The arguments to either method are the hours as a 24 hour clock (e.g. 0 = midnight, 1= 1 am, 10 = 10 am, 12 =
noon, 22 = 10 pm) and the minutes after the hour (0-59).

To Do List:

1. Open the project for Exercise 7.
2. Run the TimeDisplayTest and note the results. How many tests pass?

 How many fail?

3. Review the tests. Why do they fail?

4. Use the provided test stub, TimeProviderTestStub, to restructure the tests to have control over the indirect inputs.
Note your results (1/2 tests still fail). Why does one test still fail?

5. What are the additional boundary conditions that have not been tested yet? Add additional tests for these boundary
conditions.

6. If time permits, create a test to verify the behavior of TimeDisplay when it receives an exception. Create a new test stub
that throws a hard-coded Exception when the getTime method is called. This will give you some experience writing your
own hard-coded test stubs. Note the results of running this test (the new test should pass).

7. If time permits, copy the test created in step 6, but use the existing TimeProviderTestStub. Modify the existing

TimeProviderTestStub to be configured to throw an exception
 (hint: add a new method on TimeProviderTestStub to set the exception, and modify the getTime method to

throw the exception that was set). This will give you some experience writing configurable test stubs. Note the
results of running this test

 (the new test should pass).

8. If time permits, create a test to verify the behavior of TimeDisplay when it receives a null date. Create a new test stub to
return a null date when the getTime method is called. What result do you expect? What does the specification say about
the handling of null dates?

9. If you have time, review the Exercise-07-Result project. Record your impressions here:

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 8 - Page 1 of 3

Exercise 8 Instructions
Purpose
Practice using Test Spies and Mock Objects to test indirect outputs.
System Description
Certain FlightManagementFacade methods are required to be logged. It must log the date, user, action code, and details.
Nothing is logged if the method encounters an error and does not complete successfully.

Façade Method Log Message Action Code (Constant in helper) Log Message Detail
CreateAirport ‘CreateAirport’

(CREATE_AIRPORT_ACTION_CODE)
Airport code

CreateFlight ‘CreateFlight’
(CREATE_FLIGHT_ACTION_CODE)

Flight number
RemoveFlight ‘RemoveFlight’

(REMOVE_FLIGHT_ACTION_CODE)
Flight number

F light M anagem ent F aca de Im p l
se tA ud itLog ()g e tA ud itLog()c rea teF light()c rea teA irport()rem oveF light()flightE xis ts()

F light D to A irp or t D to

A ud it Log
logM essage()

<<Inte rface >>

A ud it Lo g Im p l

Your Mission:
Write unit tests that verify that AuditLog.logMessage() method is being called as specified.
At your disposal:
All of the classes and methods indicated in the diagram above, including: FlightManagmentFacadeImpl that calls AuditLogImpl via the AuditLog interface. AuditLogTestSpy (implements the AuditLog interface.) MockAuditLog (implements the AuditLog interface.) Method on FlightManagementFacadeImpl (setAuditLog) to install either of these test stubs. Methods and constants on the Helper class: CREATE_FLIGHT_ACTION_CODE CREATE_AIRPORT_ACTION_CODE REMOVE_FLIGHT_ACTION_CODE TEST_USER_NAME getTodaysDateWithoutTime() Methods on the FlightManagementFacadeTest class assertAuditLogCalledCorrectly

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 8 - Page 2 of 3

To Do List:
1. Open the project for Exercise 8.
2. Run the FlightManagementFacadeTest and note the results. (4/4 tests should pass).

3. Inspect the tests; do the tests verify the audit logging is performed correctly?

4. Test Spy: Enhance the existing removeFlight_LeavesNoFlight to verify the indirect outputs.

 Rename the test to more accurately reflect the purpose (e.g. RemoveFlight_ShouldLog_TestWithSpy)
 Create an instance of AuditLogTestSpy, and install it on the façade (use the setAuditLog method or use the

AuditLog property depending on your programming language.)
 After invoking the removeFlight method on the façade use an EqualityAssertion to compare some of

logged fields captured by the Test Spy with expected values.
 Try using the custom assert assertAuditLogCalledCorrectly to compare all the relevant fields’ actual values

with the expected values.
 Rebuild and run xUnit. Note your results (4/4 tests should pass)

5. Mocking: Create a new test by copying the one created in step 4.
 Name the new test something like RemoveFlight_ShouldLog_TestWithMockLog
 Create an instance of MockAuditLog and configure it using the setExpectedNumberOfCalls method with

one parameter (the integer value 1).
 Configure it using the setExpectedLogMessage method with 4 parameters: date, user name, action code,

and detail (flight #).
 Install the MockAuditLog on the façade.
 In the verify outcomes part of the test, call the verify() method on the test stub
 Rebuild and run your tests. Note your results (5/5 tests should pass).

6. Write a new test for the CreateAirport method using a Test Spy. (I.e. Repeat step 4.)
 Note your results (1/6 tests fail). What bug did you find?i

7. Write a new test for the CreateAirport method using a Mock Object. (I.e. Repeat step 5.)
 Note your results (2/7 tests fail). What bug did you find?ii

8. Write a new test for the CreateFlight method using a Test Spy. (I.e. Repeat step 4.)

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 8 - Page 3 of 3

 Note your results (the new test should pass). iii

9. Write a new test for the CreateFlight method using a Mock Object. (I.e. Repeat step 5.)

 Note your results. Does it have the same results as the previous step? If not, have a close look at the error
message and the test.

 Is it possible to properly configure the Mock Object in this circumstance? Hint:when are flight numbers
created vs. when is the Mock Object configured vs. when is the verification of the actual parameters?

10. If you have time, review the Constructor Test.
 Retrieve the AuditLog from the façade and use an assertion to verify that the correct audit log is installed

by default.
 Note your results. What bug did you find?iv

 What did you just learn about testing with test stubs (is it enough?).

11. This exercise used static stubs or mock objects. If you have time, use your favourite mocking tool or framework to

repeat each of the above.
 Compare the resulting tests with their hand-rolled equivalents. Are the resulting tests easier or harder to

understand? To write?

12. If you have time, review the code in the Exercise 8 Result project.

If you are new to mocking and stubbing, and would like to explore dynamic mock objects, see :
http://www.easymock.org or http://www.jmock.org or http://mockito.org/ for Java,
http://sourceforge.net/projects/easymocknet/ for .Net or http://www.assembla.com/wiki/show/hippomocks for C++.

 i If the bug wasn’t related to the action code, then there is a problem in your test. ii If it isn’t the same bug as the previous step, then there is a problem with your test. iii If your test fails there is a problem with your test: remember that the flight number is not known until after the flight is
created. iv If the bug wasn’t related to the existence of a real audit log, then there is something wrong with your test.

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 9 - Page 1 of 3

Exercise 9 Instructions
Purpose
To devise strategies for improving the testability of an existing class.
System Description
Given a flight number for the inbound plane and a flight number for the outbound plane at a particular
airport, the FlightConnectionAnalyserImpl class calculates the connection time between the 2
flights. It determines the connection time as ‘legal’ in the following conditions:

- incoming flight and outbound flight are from the same airline, and the connection time is greater than

29 minutes
- incoming flight and outbound flight are from different airlines, and the connection time is at least 1

hour

The FlightConnection encapsulates the connection time in minutes and indicates if the connection is
legal.

In addition, the business user requires the presentation web page to highlight any ‘illegal connections’ in
bold, red font.

Refer to the interface documentation for details of the API. (See the language-specific instructions for
details of how to do this.)

The following class diagram summarizes relationships of the relevant classes.

Flight Management Facade Impl

Flight Connection Analyzer Impl
getFlightConnectionAsHtmlFragment()

Flight Connection

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 9 - Page 2 of 3

Your Mission:
Develop a strategy for refactoring FlightConnectionAnalyzerImpl to make it easier to test.
At your disposal:

The description of the system provided here.
The code to be refactored (located in the Exercise-10 project)
Source code for FlightConnectionAnalyzerImpl, which is the target of your refactoring (located
in the Exercise-10 project.)

To Do List:

1. Import the project for Exercise-10 and run the unit tests.
2. Examine the test results. Can you determine what the bug is by looking only at the names of the

tests that are failing?

3. Review the System description above and the source code for the

FlightConnectionAnalyserImpl and dependant classes in the Exercise-10 source code.
What are the different domains/concerns that are contained in this class? Which of the domains are
we actually trying to test? Should any of the domains already be tested elsewhere?

Domain 1:

Domain 2:

Domain …:

4. List at least two test conditions for each domain/concern identified above. For domain 1:

1.

2.
 For domain 2:

1.

2.
 For domain …:

1.

2.

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 9 - Page 3 of 3

5. What changes could you make to the source code to make it easier to test without introducing any
new classes? (Suppose you were planning to go into production next week.) What testing
techniques should you use in tests for each of the subdomains listed above? Do you need to
introduce a Test Double? If so, what do you need to replace? What kind of Test Double could
you use? Subdomain 1:

 Subdomain 2:

6. What changes would you make to separate the (sub)domains into separate classes? What new
class(es) would you need? What method(s) would you move to this new class(es)? What new
methods would you create? What method remains in FlightConnectionAnalyzerImpl.

Class 1:

 Class 2:

 Class 3:

7. What testing techniques should you use for each of the classes listed above? Do you need to
introduce a Test Double? If so, what object do you need to replace? What kind of Test Double
will you use?

Class 1:

 Class 2:

 Class 3:

Testing for Developers – With xUnit

2015 Gerard Meszaros Exercise 10 - Page 1 of 1

Exercise 10 Instructions
Purpose
Make FlightConnectionAnalyzerImpl easier to test by refactoring it.

System Description
See Exercise 9.
Your Mission:
Implement the refactoring in small steps that minimize the risk involved.
At your disposal:

 Your solution to exercise 9 and the solutions discussed in class. FlightConnectionAnalyzerStub, a hand-coded test stub to enable you to stub out the
FlightConnectionAnalyzerImpl with FlightConnection objects constructed in the tests. The assertFlightConnectionsEqual custom assert method on FlightConnectionAnalyzerTest. A Helper class with all the methods you should require to create anonymous flights.

To Do List:

1. Create a copy of the project Exercise 10 and call it Exercise-10-Result-1.

2. Implement the low-risk solution which allows you to test the HTML and Business Logic sub-
domains separately. Evolve the existing tests so that you have separate tests for the each sub-
domain. You may find it useful to code at least one test for each sub-domain before you do the

refactoring to see what the refactoring target looks like.

 Extra Points: Since the analyse() method is stubbed out when testing

getFlightConnectionAsHtmlFragment, do you need to create registered flights
to build your connections? Consider creating some new utility methods that create legal
and illegal connections without creating flights or airports in the Flight Management
System.

3. Now create a copy of your Result-1 project and call it Exercise-10-Result-2.

4. Implement a more elegant solution that separates the sub-domains into at least 2 separate classes.
Make sure you have enough tests to protect you before you start the refactoring.

5. If your solution doesn’t already do this, make another copy (Result-3) and try removing the need
for the complex utility methods by further refactoring the Analyser to make it independent of the
FlightManagmentFacade.

Testing for Developers – With xUnit

2017 Gerard Meszaros Exercise TDD-1 - Page 1 of 2

TDD Exercise 1 Instructions

Purpose
To incrementally develop some simple functionality through Test-Driven Development and refactoring.

System Description
You are building a Roman Numeral translator for Arabic numbers.

Your Mission:
Implement the RomanNumeralGenerator in a test-Driven approach. At each step, use the simplest
algorithm that could possibly work. When you see duplication in the logic, refactor it to simplify it. Try to
do refactoring only when you have a green bar. (Consider disabling the yet-to-be-passed test while
refactoring.)

At your disposal:
 A start on the tests for the generator in TestRomanNumeral.java.
 A very-simple hard-coded implementation to evolve in RomanNumeralGenerator.java.
 A description of the Roman Numeral system (from Wikipedia):

Roman numerals are based on seven symbols: a stroke (identified with the letter I) for a unit, a
chevron (identified with the letter V) for a five, a cross-stroke (identified with the letter X) for a ten, a
C (identified as an abbreviation of Centum) for a hundred, etc.:

Symbol Value
I 1 (one) (unus)
V 5 (five) (quinque)
X 10 (ten) (decem)
L 50 (fifty) (quinquaginta)
C 100 (one hundred) (centum)
D 500 (five hundred) (quingenti)
M 1,000 (one thousand) (mille)

Symbols are iterated to produce multiples of the decimal (1, 10, 100, 1,000) values, with V, L, D
substituted for a multiple of five, and the iteration continuing: I "1", II "2", III "3", V "5", VI "6", VII
"7", etc., and the same for other bases: X "10", XX "20", XXX "30", L "50", LXXX "80"; CC "200",
DCC "700", etc. At the fourth iteration, a subtractive principle may be employed, with the base placed
before the higher base: IIII or IV "4", VIIII or IX "9", XXXX or XL "40", LXXXX or XC "90",
CCCC or CD "400", DCCCC or CM "900".

Testing for Developers – With xUnit

2017 Gerard Meszaros Exercise TDD-1 - Page 2 of 2

To Do List:
1. Open the project for Exercise TDD 1.
2. Review the test (TestRomanNumerals) and the SUT (RomanNumeralGenerator).
3. Run the test, note the result.
4. Make the tests pass for 0, 1
5. Add the test for 2 and make it pass.

 Is there any way to simplify the code? The description of the system provided here including
the use cases.

6. Add the test for 3 and make it pass.
 Is there any way to simplify the code?

7. Pick the next case to add? What should it be? 10, 20, 30 is similar to 1,2,3 but with a different
letter. Or you could stick with the next number in sequence (4) or the next unique Roman (V=5)
Write your decision here:

8. Add the first test for this equivalence class and make it pass.
9. Add the next test for this equivalence class and make it pass.

 Can you remove any duplication of code? Can you change the code you have so that
duplication is easier to detect?

10. Pick the next equivalence class to implement. Pick one specific test to add and make it pass.
11. Add another test case for the same equivalence class and make it pass.
12. Now generalize the solution to remove code duplication.

13. Lather, Rinse, Repeat. Record your chosen sequence here:

14. If you didn’t implement the “Subtractive” approach (e.g. “IV” instead of “IIII”), adjust your tests
to reflect it and get them to pass. Then refactor the additional logic.
 How many tests did you change or add at one time?

 Was this too big a step? If so, try it again with smaller steps.

Evaluation Form

Testing for Developers with XUnit

Day

One Two Three Workshop

Overall Impression

Great Very Good Average Below Average Poor

Would you recommend it to an interested collegue if it were offered again?

Length of Course

Level of Detail

Relevance of Information

Clarity of Presentation

Very relevant Somewhat relevant Not very relevant

Too Detailed Good Insufficient Detail

Too Long Good Too Short

Definitely yes Neutral Advise Against

Clarity of Presentation

Usefulness of Exercises

Complexity of Exercises

Language of Study

Level of Previous XUnit Experience

None Heard of it Done the Tutorial Written lots of Tests

Is there anything you would have liked to have known before you took this course?

Additional Comments?

C#Java C++

Too complex Just Right Too Simple

Very relevant Somewhat relevant Not very relevant

Very clear Somewhat clear Not very clear

Evaluation Form

Testing for Developers with XUnit

Day

One Two Three Workshop

Overall Impression

Great Very Good Average Below Average Poor

Would you recommend it to an interested collegue if it were offered again?

Length of Course

Level of Detail

Relevance of Information

Clarity of Presentation

Very relevant Somewhat relevant Not very relevant

Too Detailed Good Insufficient Detail

Too Long Good Too Short

Definitely yes Neutral Advise Against

Clarity of Presentation

Usefulness of Exercises

Complexity of Exercises

Language of Study

Level of Previous XUnit Experience

None Heard of it Done the Tutorial Written lots of Tests

Is there anything you would have liked to have known before you took this course?

Additional Comments?

C#Java C++

Too complex Just Right Too Simple

Very relevant Somewhat relevant Not very relevant

Very clear Somewhat clear Not very clear

