Keeping Software Soft

Gerard Meszaros
India2011@gerardm.com

India Tour 2011 1 Copyright 2011 Gerard Meszaros

My Background

*Software developer
*Development manager
Embedded XUNIT TEST

*Project Manager -
J 9 Telecom PATTERNS

*Software architect

“Test Automation Consultant
*Author

Scrum2011@xunitpatterns.com

India Tour 2011 2 Copyright 2011 Gerard Meszaros

soft-ware From: http://dictionary.com

Software

soft-ware [sawft-wair, soft-]
—noun

1. Computers . the programs used to direct
the operation of a computer, as well as
documentation giving instructions on how to
use them. Compare hardware (def. 5) .

2. anything that is not hardware but is used
with hardware, especially audiovisual
materials, as film, tapes, records, etc.: a
studio fully equipped but lacking software.

3. Te i lang . prepacka erials, as
movies or reru o fill out the major
part e.

India Tour 2011 3 Copyright 2011 Gerard Meszaros

From: http://dictionary.com
Ware

ware [wair]
—nhoun

1. Usually, wares.

1. a. articles of merchandise or manufacture; goods: a
peddler selling his wares.

2. any intangible items, as services or products of artistic
or intellectual creativity, that are salable: an actor
advertising his wares.

ified kind or class of merc

India Tour 2011 4 Copyright 2011 Gerard Meszaros

From: http://dictionary.com

Soft
soft [sawft]
—adjective
1. yielding readily to touch or pressure; easily

penetrated, divided, or changed in shape; not

hard or stiff: a soft pillow.

2. re
wood.

3. smooth and he touch; not
rou skin.

India Tour 2011 5 Copyright 2011 Gerard Meszaros

More Appropriate Names for Software?

» Slow-ware -- Slow to produce
* Finnicky-ware -- Hard to get right
* Brittle-ware -- Hard to change

* Any other suggestions?

India Tour 2011 6 Copyright 2011 Gerard M

sssssss

Why Do We Care (How “Soft” it is?)

Requirements
Development

Testing

India Tour 2011 7 Copyright 2011 Gerard Meszaros

Why Do We Care (How “Soft” it is?)

Requirements
Developme .
Testing

Requirements
Developmer

=

Testing

* As development increments reduce in
duration, testing needs to be reduced
accordingly

India Tour 2011 8 Copyright 2011 Gerard M

sssssss

Why Do We Care (How “Soft” it is?)

Regliirements
Devalopment
e

sting

Reqliiremgnts

Devdlopment
'Ipes’ring

Regliirements
Deve Igrprnqn’r
esting

Reqliirements

Devalopment
1%s‘ring

... and traditional approaches to development no
longer work

India Tour 2011

Copyright 2011 Gerard Meszaros

Test&Fix Ping-Pong
~ -
@i 9"9/ee Q}
2 > il
_,«g < AT
eneny é
Requirement:
d 8868

Eequi rementg
Development

Verification &
Acceptance

Copyright 2011 Gerard Meszaros

A Word of Cautionary:

* When the US automakers implemented Lean,
they copied the practices

» Some of the culture & principles were skipped
* The results were less than ideal

Practices are not enough!

India Tour 2011 12 Copyright 2011 Gerard M

sssssss

Scrum — The Most Popular Agile Method

@‘
ai\
L& it E‘ \ _!/g

& 2 Scrum
a hours Master
L
éﬁi & ®
2-4'_5 ® Potentially
i - Shippable
8 Product
Backlog - Backlog - SENY ncrement
Sprint
Plannin
9 Inspect & Adapt

India Tour 2011 13 Added from Ron Jeffries Copyright 2011 Gerard Meszaros

Why Is Scrum Successful?

* Encourages focus on delivery
* Encourages teamwork & self-determination
* Discourages management meddling

 Early to Certification Game
— Gained huge mindshare through thousands of CSM’s

* Doesn’t impose engineering practices
— Assumes you have good ones!

India Tour 2011 14 Copyright 2011 Gerard Meszaros

Why Does Scrum Often Fail?

* Incomplete adoption of Scrum(But)
* Focus on the practices
—all management

» Unsustainable engineering/technical practices

India Tour 2011

Copyright 2011 Gerard Meszaros

Scrum — The Most Popular Agile Method

2,
\ __rrg

=
" ""'
@ e 2 Scrum
iii.\\ a hours Master
L
\7‘!/2 L] ﬁ ‘ n n
Product
Owner E'L Potentially
- e Shippable
Sprint Product
& [Increment
Sprint Sprint
Planning Review

Inspect & Adapt

India Tour 2011 16 Added from Ron Jeffries

Copyright 2011 Gerard Meszaros

Key Practice: Inspect & Adapt

Make problems visible (Inspect)
Change the process to address them (Adapt)
Repeat Forever

Probably the most important part of Scrum
* And the least well implemented.

India Tour 2011 17 Copyright 2011 Gerard Meszaros

But What Do We Change?

* What would an appropriate highly incremental
development process (that keeps software
soft) look like?

* How long would it take us to evolve there
using Inspect & Adapt?

India Tour 2011 18 Copyright 2011 Gerard M

sssssss

Design a New Process from Scratch

* Determine the Characteristics we Desire

* Pick the Practices that will Give us These
Characteristics

* Integrate Them Into a Methodology

» Takes a detailed understanding of:
— Each practice, and
— How the Practices Interact
« Cannot be acquired without actual experience

* The people with the power (process police)
don’ t have the experience

India Tour 2011 Copyright 2011 Gerard Meszaros

Adopt and Inspect

Find a Development Process that’s known to
work

Adopt it
Inspect the Results & Adapt

Example: Scrum with XP Inside™
— XP = eXtreme Programming

India Tour 2011 20 Copyright 2011 Gerard M

sssssss

10

Scrum with XP Inside™

Spiral
Waterfalll

Can't
Possibly
Work!

India Tour 2011 21

Can't
Possibly

eXtreme

Copyright 2011 Gerard Meszaros

Scrum Practices

Product
Owner
Product
Backlog
Inspect Short
& Adapt Sprints

Added from Ron Jeffries

ScrumMaster

Sprint
Planning

Sprint
Review

Copyright 2011 Gerard Meszaros

Scrum + XP Practices ScrumMaster
Product

Owner

Coding
Standard

Collective

Ownership Test-First
~~ Dev't N
Small Pair . Sprint
Stories Programming Refactoring Planning
w/Tests . .
Contlnuous\ Simple Sustainable
Integration Design Pace

Metaphor

Short
Sprints

Inspect Sprint
Review

& Adapt

India Tour 2011

bA] Courtesy of Ron Jeffries Copyright 2011 Gerard Meszaros

Key Requirement Practices

« Small Increments of Functionality

—Small, testable user stories
— Enables continuous flow of functionality

— Can be finished in a single sprint
» Acceptance (Story) Test Driven Development
— Also known as Example-Driven Development
— Concrete examples of expected results
— Avoids Test&Fix Ping Pong

I talk about these in my
session: User Stories -
The Whole Story

24 Copyright 2011 Gerard Meszaros

India Tour 2011

12

Key Engineering Practices

» Continuous Integration
— Frequent check-ins reduce integration debt
+ Automated Functional Testing
— Detect changes in behaviour quickly
— Ensures same tests run every time
* Automated Unit Testing
— Improves automated test coverage
— Detects changes faster with less effort
» Refactoring
— Improving the design of code incrementally

India Tour 2011 25 Copyright 2011 Gerard Meszaros

Continuous Integration

Consists of 3 essential components:

1. Build Server

— With software to rebuild the system every time code is
checked in.

2. Automated Tests
— To verify the code works (compile+link isn’t enough)
3. Frequent Check-ins

— At least once a day, on average, by every developer: =
ul

—Run all unit tests before checking in. = o
» “Keep the Bar Green to Keep the Code Clean”

» Requires automated tests that run quickly | ~— >
Dev't Code
R
PC ipC)/

India Tour 2011 26 Copyright 2011 Gerard Meszaros

13

Automated Testing

* Required to keep the cost of regression
testing low enough to do for every build.

* Need functional tests to ensure functionality
valued by stakeholders still works.

* Need unit or component tests to get good
enough test coverage

— Code valued by developers/testers (error/exception
scenarios) often cannot be hit by pure functional tests

* But, we need all these tests before we check in
the code

— So that Cl can catch any errors on future check-

India Tour 2011 27 Copyright 2011 Gerard Meszaros

Where Does This Leave Us?

* We can add new code

* We can change existing code

* We can find out whether we broke anything
* Anyone can change anything, safely

But Does this make the Software “soft"

And Where Does the Software Design Happen?

India Tour 2011 28 Copyright 2011 Gerard Meszaros

14

Refactoring (from a Simple Design)
Improving the design of existing code without
changing its functionality

* Should be done in small steps so system
always works (never broken)

Requires understanding of:

* What good design looks like (e.g. Patterns),
* And the transformations (refactoring moves)
Is a High Skill Activity

Less Risky Than Re-Architecting!

India Tour 2011 29 Copyright 2011 Gerard Meszaros

Refactoring vs. Prefactoring
» “Architecture” or “Design Up Front” may work

for known requirements
— But speculative frameworks are often hard to use

* For yet unknown requirements, only
refactoring will help

* Emergent frameworks are easier to use

—because they are simpler (based on actual usage
patterns)

You Will Need to Refactor;
So Learn It Beforehand!

India Tour 2011 30 Copyright 2011 Gerard Meszaros

15

Contentious Engineering practices

* Test-Driven Development

— Ensures unit tests are written

— Avoids untestable code

— Improves the design

— Reduces the amount of time wasted debugging
* Pair Programming

— Avoids wasting time on dead ends

— Ensures required discipline occurs

India Tour 2011 31 Copyright 2011 Gerard Meszaros

Goals of Automated Developer Tests

» Before code is written

— Tests as Specification Requires writing

tests before
code (TDD

» After code is written
— Tests as Documentation
— Tests as Safety Net (Bug Repellent)

— Defect Triangulation (Minimize Debuggin

* Minimize Cost of Running Tests
— Fully Automated Tests
— Repeatable Tests
—Robust Tests

India Tour 2011 32 Copyright 2011 Gerard Meszaros

16

Preventing Coding Defects
(Building the Right Product)

Write | | Review U | l — u
Reqts [*| Reqts Detection! jed Rework! Jr'e_‘
| S / \

L | VN
Write Insert Unit Test | | Identify | | Determine
Code [°| Defect [7| Code /Debug || Fix

t |

Deploy Test Deploy
to QA ” Application g System

India Tour 2011 33 Copyright 2011 Gerard Meszaros

Preventing Coding Defects
(Building the Right Product)

Write Review | | Update| | Sign Off | | Design

p +ionl Req'ts Req'ts on Req'ts Software
revention! A
|
Write Unit Write Run Unit Identify | | Determine
Tests | | Code || Tests ||/ Debug g Fix
L |

Deploy Test Deploy
to QA ” Application 7 System

India Tour 2011 34 Copyright 2011 Gerard Meszaros

Preventing Coding Defects
(Building the Right Product)

Write Review Update Sign Off Design
Req'ts | 7| Req'ts | | Req'ts | | onReq'ts | | Software
S

Write Unit Write | | Run Unit (Unit) Test-Driven

Tests | | Code || Tests —|\D/eve|opmen‘r
4 |

Oy Test oy Prevents bugs
_> . .
Application System Lcmwlmg back in

new code

Copyright 2011 Gerard Meszaros

Prevent defects in]

Isn’t TDD Redundant?

+ Expect to write at least as much test code as
production code!

* Won'’t that double the cost of building the
product?

* No! If you do it right, it will reduce the cost.

India Tour 2011 36 Copyright 2011 Gerard Meszaros

18

TDD Rhythm

Test Code Product Code

* First Test * Hard-coded method

+ Second Test Introduce variable

* Third Test * Introduce conditional
* Fourth Test » Surround with a loop

Just Like Double-Entry Booking:

* An entry on the test side for each entry on
the Prod side

India Tour 2011 37 Copyright 2011 Gerard Meszaros

Where Does This Leave Us?

Continuous Integration
(all 3 parts)

+ Automated Tests
+ Test-Driven Development

+ Refactoring

Tuly'28" 2011 38 B VOEA DU s

19

Economics of Maintainability

Test Automation is a lot easier to sell on
*+ Cost reduction than

+ Software Quality Improvement or
* Quality of Life Improvement

Initial Test Automation

+ Ongoing Maintenance

Test
Automation 4
Effort
Increased
efifort >
Development | 4 (Hump) Ongoing
Effort |Tnitial v effort
effort W/
v MWM
After Automation time ———»

India Tour 2011

39 Copyright 2011 Gerard Meszaros

A

Economics of Maintainability

Test Automation is a lot easier to sell on
 Cost reduction than

+ Software Quality Improvement or
* Quality of Life Improvement

Test
Automation
Effort

Development
Effort

Unsustainable Automation

India Tour 2011

Initial Test Automation
+ Ongoing Maintenance

Increased
efifort >
(Hump) Ongoing
Ini iGl effor“r
effort

v

time ——»

40 Copyright 2011 Gerard Meszaros

20

public void testAddItemQuantity severalQuantity () throws Exception {

waerme(Re)Eactaring Test Code

St SW", "Calgary", "Alberta", "T2N 2v2",

"Canada") ;
dd hippi dd = new Add ("1333 1st
St SW", "Calgary", "Alberta", "T2N 2v2",
"Canada") ;
Customer customer = new Customer (99, "John",
"Doe", new BigDecimal("30"), Public void
billi dd hippi dd ;

Product product = new’ Product (88, "Some’widg&eStAddI temQuanti ty SeVeralQuantit
new BigDecimal("19.99")); () { -
Invoice invoice = new Invoice (customer) ;
// Exercise SUT — .
invoice.addItemQuantity (product, QUANTITY) ; QUANTITY - 5 ’
// Verify Outcome
List lineItems = invoice.getLineItems() ; PrOduCt = CreateprOduCt () ;
if (lineItems.size() == 1) { . . .
LineItem actualLineTtem = invoice = createAlnvoice():;
(LineItem)lineItems.get (.
assertEquals (invoice, // Exercise SUT
actualLineItem.getInvoic|

assertEquals (product, invoice.addItemQuantity (

actualLineItem.getProduct());

assertEquals (quantity, Product, QUANTITY) H

actualLineItem.getQuantity());
assertEquals (new BigDecimal("30"), // Veri fy Outcome

actualLineItem.getPercentDiscount()) ;

assertEquals (new BigDecimal("19.99"), p— s
actualLineI‘::ex:. getUlnitPrice()) ; expeCtedI tem - neWLlneItem (
assertEquals (new BigDecimal(“69.96"), invoice Product QUANTITY
actualLineItem.getExtendedPrice()) ; 4 . ’ * 4
} else { product.getPrice ()
tTrue (“Invoi hould h 1. .
asserl inteuei ¢ eX:‘V,Olfcael sse)o;u ave exactly one QUANTITY) ;
R assertExactlyOnelLineItem(invoic
deleteObject (tedLineItem) ; .
leZtZOb;::t(ﬁsz:c:) Jneren expectedItem) ;
deleteObject (product) ;
deleteObject (customer) ; }

deleteObject (billingAddress) ;
deleteObject (shippingAddress) ;

India Tour 2011 : 41 Copyright 2011 Gerard Meszaros
1

Refactored Test Code

public void

testAddItemQuantity severalQuantity () {
QUANTITY = 5 ;
product = createAProduct() ;
invoice = createAnInvoice();
// Exercise SUT
invoice.addItemQuantity(product, QUANTITY) ;
// Verify Outcome

expectedItem = newLineItem (
invoice, product, QUANTITY,
product.getPrice () * QUANTITY) ;
assertExactlyOnelLineItem (
invoice,expectedItem) ;

India Tour 2011 42 Copyright 2011 Gerard Meszaros

21

The Least Utilized Practice: Pairing
Pairing is two people working together at the
same computer
* A Developer + Tester writing tests
* An Analyst + Developer defining requirements
* Two PM’s defining inter-dependencies
* Two Developers writing code & tests

* Isn’t this wasteful?

India Tour 2011 43 Copyright 2011 Gerard Meszaros

22

Isn’t Pairing wasteful?

Two minds produce better product, faster
* Pilot + Co-pilot
—“50 metres (elevation), 40 metres, ...”
* Driver + Navigator
—The next turn is 110degrees at 80 km/h >
* Plumber + apprentice/helper
—“I'll hold this pipe while you attach that end.”
* Two Developers:
—“Shouldn’t we write a test first?”
—“Wouldn’t an Iterator be a better way of doing that?”

India Tour 2011 45 Copyright 2011 Gerard Meszaros

An Ecosystem of Practices

Small

Stories | ——

Frequent
/ Delivery

Continuous /
Integration \

Quality

India Tour 2011 46 Copyright 2011 Gerard Meszaros

23

An Ecosystem of Practices

TDD

India Tour 2011

Small
Stories |
Frequent
/ Delivery
Continuous /
Integration
\ Quality
Automated
Tests

47

Copyright 2011 Gerard Meszaros

An Ecosystem of Practices

TDD

India Tour 2011

Small
Stories | ——
Frequent
/ Delivery
Continuous /
Integration
\‘ Quality

Automated
Tests

Copyright 2011 Gerard Meszaros

24

An Ecosystem of Practices

Small

Stories |

Frequent
/ Delivery

/ TDD

Pairing Continuous /
Integration
\ Quality

Automated
Tests

India Tour 2011 Copyright 2011 Gerard Meszaros

Conclusions

Highly Incremental Development

Requires a Change in How We Build Software
* To Deliver Continuous Stream of Value

* To Reduce the Cost of Change

* By Reducing the Likelihood of Inserting
Defects

* And to Speed Up the Detection of New Defects

India Tour 2011 50 Copyright 2011 Gerard Meszaros

Conclusions (2)

Highly Incremental Development

Requires:

» Smaller Stories/Features

» Continuous Integration (all 3 parts!)

» Test-Driven Development (Acceptance & Unit)
+ Automated Test Execution

» Close Teamwork including Pairing

India Tour 2011 51 Copyright 2011 Gerard Meszaros

Conclusions (3)

Highly Incremental Development
may be:
* Evolved using Inspect & Adapt

* Designed from scratch based on deep
understanding

* Adopted & Evolved (e.g. Scrum + XP)

India Tour 2011 52 Copyright 2011 Gerard M

sssssss

26

Thank You!

Gerard Meszaros
India2011@gerardm.com
http://www.xunitpatterns.com

http://KeepingSoftwareSoft.gerardm.com

Call me when you:

+ Want to transition to Agile or Lean

+ Want to do Agile or Lean better

+ Want to teach developers how to test

* Need help with test automation strategy
+ Want to improve your test automation

India Tour 2011

53

XU Test
PaTTERNS

Jolt Productivity Award
winner - Technical Books

http://testingguidance

w
@
¥
w
o
(=%
ol
c
@
-
-
o
o

27

