
1

1 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Keeping Software Soft
保持软件的“软”

Gerard Meszaros
Shanghai2011@gerardm.com

2 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

I.T.

Embedded
Telecom

My Background

Gerard Meszaros
Scrum2011@xunitpatterns.com

•Software developer

•Development manager

•Project Manager

•Software architect

•OOA/OOD Mentor

•XP/TDD Mentor

•Agile PM Mentor

•Test Automation Consultant

•Author

•Lean/Agile Coach/Consultant

2

3 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Software软件
soft·ware From: http://dictionary.com

soft·ware [sawft-wair, soft-]
–noun
1. Computers . the programs used to direct

the operation of a computer, as well as
documentation giving instructions on how to
use them. Compare hardware (def. 5) .

2. anything that is not hardware but is used
with hardware, especially audiovisual
materials, as film, tapes, records, etc.: a
studio fully equipped but lacking software.

3. Television Slang . prepackaged materials, as
movies or reruns, used to fill out the major
part of a station's program schedule.

4 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Ware物品
ware [wair]
–noun
1. Usually, wares.

1. a. articles of merchandise or manufacture; goods: a
peddler selling his wares.

2. any intangible items, as services or products of artistic
or intellectual creativity, that are salable: an actor
advertising his wares.

2. a specified kind or class of merchandise or
of manufactured article (usually used in
combination): silverware; glassware.

3. pottery, or a particular kind of pottery: delft
ware.

From: http://dictionary.com

3

5 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Soft软
soft [sawft]
–adjective
1. yielding readily to touch or pressure; easily

penetrated, divided, or changed in shape; not
hard or stiff: a soft pillow.

2. relatively deficient in hardness, as metal or
wood.

3. smooth and agreeable to the touch; not
rough or coarse: a soft fabric; soft skin.

From: http://dictionary.com

6 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

More Appropriate Names for Software?

• Slow-ware -- Slow to produce
• Finnicky-ware -- Hard to get right
• Brittle-ware -- Hard to change

4

7 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Why Do We Care (How “Soft” it is?)

Requirements
Development

Testing

8 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Why Do We Care (How “Soft” it is?)

• As development increments reduce in
duration, testing needs to be reduced
accordingly

Testing
Development

Requirements

Testing
Development

Requirements

5

9 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Why Do We Care (How “Soft” it is?)

... and traditional approaches to development no
longer work

Testing
Development

Requirements

Testing
Development

Requirements

Testing
Development

Requirements

Testing
Development

Requirements

10 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Test&Fix Ping-Pong

Development
Verification &

Acceptance

Requirements Requirements

6

11 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Quality Inspiration: Lean Manufacturing

12 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

A Word of Cautionary:
• When the US automakers implemented Lean,

they copied the practices
• Some of the culture & principles were skipped

Practices are not enough!

7

13 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Scrum Practices

Inspect & Adapt

Sprint
Review

Added from Ron Jeffries

Product
Owner

Sprint
Planning

Scrum
Master

14 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Key Practice: Inspect & Adapt
• Make problems visible (Inspect)
• Change the process to address them (Adapt)
• Repeat Forever

• Probably the most important part of Scrum
• And the least well implemented.

8

15 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

But What Do We Change?
• What would an appropriate highly incremental

development process (that keeps software
soft) look like?

• How long would it take us to evolve there
using Inspect & Adapt?

16 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Design a New Process from Scratch
• Determine the Characteristics we Desire
• Pick the Practices that will Give us These

Characteristics
• Integrate Them Into a Methodology

• Takes a detailed understanding of:
– Each practice, and
– How the Practices Interact

• Cannot be acquired without actual experience

9

17 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Adopt and Inspect
• Find a Development Process that’s known to

work
• Adopt it
• Inspect the Results & Adapt

• Example: Scrum with XP InsideTM

– XP = eXtreme Programming

18 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Scrum with XP InsideTM

Spiral
Waterfall!

Can’t
Possibly
Work!

eXtreme
Programming

Can’t
Possibly
Work!

10

19 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Scrum Practices
Product
Owner

Sprint
Planning

Short
Sprints

Inspect
& Adapt

Sprint
Review

Added from Ron Jeffries

Product
Backlog

ScrumMaster

20 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Scrum + XP Practices

Metaphor

Collective
Ownership

Coding
Standard

Sustainable
Pace

Continuous
Integration

Product
Owner

Sprint
Planning

Short
Sprints

Small
Stories
w/Tests

Simple
Design

Pair
Programming

Test-First
Dev’t

Refactoring

Inspect
& Adapt

Sprint
Review

Courtesy of Ron Jeffries

ScrumMaster

11

21 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Key Requirement Practices
• Small Increments of Functionality

– Small, testable user stories
– Enables continuous flow of functionality
– Can be finished in a single sprint

• Acceptance (Story) Test Driven Development
– Concrete examples of expected results
– Avoids Test&Fix Ping Pong

I’ll talk about these in
my session: User Stories

– The Whole Story

22 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Key Engineering Practices
• Continuous Integration

– Frequent check-ins reduce integration debt
• Automated Functional Testing

– Detect changes in behaviour quickly
– Ensures same tests run every time

• Automated Unit Testing
– Improves automated test coverage
– Detects changes faster with less effort

• Refactoring
– Improving the design of code incrementally

12

23 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Continuous Integration
Consists of 3 essential components:
1. Build Server

– With software to rebuild the system every time code is
checked in.

2. Automated Tests
– To verify the code works (compile+link isn’t enough)

3. Frequent Check-ins
– At least once a day, on average, by every developer
– Run all unit tests before checking in.

» “Keep the Bar Green to Keep the Code Clean”
» Requires automated tests that run quickly

Code
Repo

Build
Server

Dev’t
PCDev’t

PCDev’t
PC

GGM58

24 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Automated Testing
• Required to keep the cost of regression

testing low enough to do for every build.
• Need functional tests to ensure functionality

valued by stakeholders still works.
• Need unit or component tests to get good

enough test coverage
– Code valued by developers/testers (error/exception

scenarios) often cannot be hit by pure functional tests
• But, we need all these tests before we check in

the code
– So that CI can catch any errors on future check-ins Implies

TDD

Slide 23

GGM58 Need some graphics
Gerard Meszaros, 6/16/2011

13

25 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Where Does This Leave Us?
• We can add new code
• We can change existing code
• We can find out whether we broke anything
• Anyone can change anything, safely

And Where Does the Software Design Happen?

But Does this make the Software “soft”

26 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Refactoring (from a Simple Design)
Improving the design of existing code without

changing its functionality
• Should be done in small steps so system

always works (never broken)
Requires understanding of:
• What good design looks like (e.g. Patterns),
• And the transformations (refactoring moves)
Is a High Skill Activity

Less Risky Than Re-Architecting!

GGM59

Slide 26

GGM59 Possibly create a "Where are we now" slide preceding this one.
Gerard Meszaros, 6/16/2011

14

27 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Refactoring vs. Prefactoring
• “Architecture” or “Design Up Front” may work

for known requirements
– But speculative frameworks are often hard to use

• For yet unknown requirements, only
refactoring will help

• Emergent frameworks are easier to use
– because they are simpler (based on actual usage

patterns)

You Will Need to Refactor;
So Learn It Beforehand!

28 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Contentious Engineering practices
• Test-Driven Development

– Ensures unit tests are written
– Avoids untestable code
– Improves the design
– Reduces the amount of time wasted debugging

• Pair Programming
– Avoids wasting time on dead ends
– Ensures required discipline occurs

15

29 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Requires TDD
Requires writing

tests before
code (TDD)

Goals of Automated Developer Tests

• Before code is written
– Tests as Specification

• After code is written
– Tests as Documentation
– Tests as Safety Net (Bug Repellent)
– Defect Triangulation (Minimize Debugging)

• Minimize Cost of Running Tests
– Fully Automated Tests
– Repeatable Tests
– Robust Tests

30 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Insert
Defect

Determine
Fix

Identify
/ Debug

Run Unit
Tests

Preventing Coding Defects
(Building the Right Product)

Write
Req’ts

Review
Req’ts

Update
Req’ts

Sign Off
on Req’ts

Test
Application

Deploy
to QA

Deploy
System

Design
SoftwareDetection!

Write
Code

Unit Test
Code

Rework!Rework!

16

31 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Preventing Coding Defects
(Building the Right Product)

Write
Req’ts

Review
Req’ts

Update
Req’ts

Sign Off
on Req’ts

Write Unit
Tests

Run Unit
Tests

Test
Application

Deploy
to QA

Deploy
System

Design
Software

Write
Code

Prevention!

Determine
Fix

Identify
/ Debug

32 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Preventing Coding Defects
(Building the Right Product)

Write
Req’ts

Review
Req’ts

Update
Req’ts

Sign Off
on Req’ts

Write Unit
Tests

Run Unit
Tests

Test
Application

Deploy
to QA

Deploy
System

Design
Software

Write
Code

(Unit) Test-Driven
Development

Prevents bugs
crawling back in

Prevent defects in
new code

17

33 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Isn’t TDD Redundant?
• Expect to write at least as much test code as

production code!
• Won’t that double the cost of building the

product?
• No! If you do it right, it will reduce the cost.

34 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

TDD Rhythm

Test Code
• First Test
• Second Test
• Third Test
• Fourth Test

Product Code
• Hard-coded method
• Introduce variable
• Introduce conditional
• Surround with a loop

Just Like Double-Entry Booking:
• An entry on the test side for each entry on

the Prod side

18

35 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

CI + RT + TDD = ???

36 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Test
Automation

Effort

Economics of Maintainability

Test Automation is a lot easier to sell on
• Cost reduction than
• Software Quality Improvement or
• Quality of Life Improvement

Development
Effort

saved effort

time

Increased
effort
(Hump) Ongoing

effortInitial
effort

Initial Test Automation
+ Ongoing Maintenance

After Automation

19

37 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Test
Automation

Effort

saved effort

Economics of Maintainability

Test Automation is a lot easier to sell on
• Cost reduction than
• Software Quality Improvement or
• Quality of Life Improvement

time

Initial
effort

Ongoing
effort

Initial Test Automation
+ Ongoing Maintenance

Increased
effort
(Hump)

Unsustainable Automation

Development
Effort

38 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

(Re)Factoring Test Code
public void testAddItemQuantity_severalQuantity () throws Exception {

try {

// Setup Fixture
final int QUANTITY = 5;
Address billingAddress = new Address("1222 1st

St SW", "Calgary", "Alberta", "T2N 2V2",
"Canada");

Address shippingAddress = new Address("1333 1st
St SW", "Calgary", "Alberta", "T2N 2V2",
"Canada");

Customer customer = new Customer(99, "John",
"Doe", new BigDecimal("30"),
billingAddress, shippingAddress);

Product product = new Product(88, "SomeWidget",
new BigDecimal("19.99"));

Invoice invoice = new Invoice(customer);
// Exercise SUT
invoice.addItemQuantity(product, QUANTITY);
// Verify Outcome
List lineItems = invoice.getLineItems();
if (lineItems.size() == 1) {
LineItem actualLineItem =

(LineItem)lineItems.get(0);
assertEquals(invoice,

actualLineItem.getInvoice());
assertEquals(product,

actualLineItem.getProduct());
assertEquals(quantity,

actualLineItem.getQuantity());
assertEquals(new BigDecimal("30"),

actualLineItem.getPercentDiscount());
assertEquals(new BigDecimal("19.99"),

actualLineItem.getUnitPrice());
assertEquals(new BigDecimal(“69.96"),

actualLineItem.getExtendedPrice());
} else {
assertTrue(“Invoice should have exactly one

line item“, false);
}

} finally {

deleteObject(expectedLineItem);
deleteObject(invoice);
deleteObject(product);
deleteObject(customer);
deleteObject(billingAddress);
deleteObject(shippingAddress);

:
}

public void
testAddItemQuantity_severalQuant
ity () {

QUANTITY = 5 ;
product = createProduct();
invoice = createAInvoice();
// Exercise SUT
invoice.addItemQuantity(

product, QUANTITY);
// Verify Outcome
expectedItem =

newLineItem(invoice,
product, QUANTITY,
product.getPrice()*

QUANTITY);
assertExactlyOneLineItem(

invoice, expectedItem);
}

20

39 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

The Least Utilized Practice: Pairing
Pairing is two people working together at the
same computer
• A Developer + Tester writing tests
• An Analyst + Developer defining requirements
• Two PM’s defining inter-dependencies
• Two Developers writing code & tests

• Isn’t this wasteful?

40 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Isn’t Pairing wasteful?

21

41 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Isn’t Pairing wasteful?
Two minds produce better product, faster
• Pilot + Co-pilot

– “50 metres (elevation), 40 metres, ...”
• Driver + Navigator

– The next turn is 110degrees at 80 km/h
• Plumber + apprentice/helper

– “I’ll hold this pipe while you attach that end.”
• Two Developers:

– “Shouldn’t we write a test first?”
– “Wouldn’t an Iterator be a better way of doing that?”

42 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

An Ecosystem of Practices

Continuous
Integration

Frequent
Delivery

Quality

Small
Stories

GGM61

Slide 42

GGM61 Animate the entrace
Gerard Meszaros, 6/23/2011

22

43 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

An Ecosystem of Practices

Continuous
Integration

TDD

Automated
Tests

Frequent
Delivery

Quality

Small
Stories

GGM63

44 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

An Ecosystem of Practices

Continuous
Integration

TDD

Automated
Tests

Simple
Design

Refactoring

Frequent
Delivery

Quality

Small
Stories

GGM65

Slide 43

GGM63 Animate the entrace
Gerard Meszaros, 6/23/2011

Slide 44

GGM65 Animate the entrace
Gerard Meszaros, 6/23/2011

23

45 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

An Ecosystem of Practices

Pairing Continuous
Integration

TDD

Automated
Tests

Simple
Design

Refactoring

Frequent
Delivery

Quality

Small
Stories

GGM64

46 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Conclusions (2)
Highly Incremental Development Using Scrum
Requires a Change in How We Build Software
• To Deliver Continuous Stream of Value
• To Reduce the Cost of Change
• By Reducing the Likelihood of Inserting

Defects
• And to Speed Up the Detection of New Defects

Slide 45

GGM64 Animate the entrace
Gerard Meszaros, 6/23/2011

24

47 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Conclusions (2)
Highly Incremental Development Using Scrum
Requires:
• Smaller Stories/Features
• Continuous Integration (all 3 parts!)
• Test-Driven Development (Acceptance & Unit)
• Automated Test Execution
• Close Teamwork including Pairing

48 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Conclusions (3)
Highly Incremental Development Using Scrum
may be:
• Evolved using Inspect & Adapt
• Designed from scratch based on deep

understanding
• Adopted & Evolved (e.g. Scrum + XP)

25

49 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Thank You!
Gerard Meszaros

Shanghai2011@gerardm.com
http://www.xunitpatterns.com

http://ShanghaiSlides.gerardm.com

Call me when you:
• Want to transition to Agile or Lean
• Want to do Agile or Lean better
• Want to teach developers how to test
• Need help with test automation strategy
• Want to improve your test automation

Jolt Productivity Award
winner - Technical Books

http://testingguidance
.codeplex.com/

50 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Spiral Waterfall in Telecom

What We Had
• Nightly Builds
• Automated

Regression Testing
• Manual Acceptance

Testing

What Was Lacking
• Check-in after

developer testing
• Specialized

regression
environment & tools

• Acceptance Tests
Written After Code

The Results
• Broken Builds
• Test & Fix Ping Pong
• Release Slippage

GGM60

Slide 50

GGM60 The lacking part is missing the context of modern agile practices. Maybe it should be done after I
introduce the practices?

Or, I could repeat the slide with the Lacking part near the end of the talk as a summary or learnings
slide.
Gerard Meszaros, 6/16/2011

26

51 Copyright 2011 Gerard MeszarosScrum Gathering Shanghai 2011

Original XP Practices

Metaphor

Collective
Ownership

Coding
Standard

Sustainable
Pace

Continuous
Integration

On-Site
Customer

Planning
Game

Small
Releases

Story
Tests

Simple
Design

Pair
Programming

Test-First
Dev’t

Refactoring

Local
Adaptation

Iteration
Retrospectives

Courtesy of Ron Jeffries

