
Using Storyotypes to Split Bloated XP Stories

Gerard Meszaros

ClearStream Consulting Inc., 3710– 205 – 5th Avenue S.W.

Calgary, Alberta Canada T2P 2V7

gerard@clrstream.com

Abstract. An ideal XP project is composed of stories defined by the customer
that are of the right size and focus to plan and manage according to XP
principles and practices. A story that is too large creates a variety of problems:
it might not fit into a single iteration; there are a large number of tasks that must
be coordinated; it can be too large to test adequately at the story/functional
level; too much non-essential functionality is bundled early in development
causing essential functionality to be deferred. Teams new to XP find managing
the size of stories especially challenging because they lack the experience
required to simplify and breakdown large stories. This experience report
describes four heuristics (storyotypes) we have used on our XP projects to
successfully manage the size of stories.

INTRODUCTION

At ClearStream Consulting, we have helped many clients learn how to apply eXtreme
Programming (XP) on their projects. A common problem they face is getting the right
granularity for their stories; most projects start off with “bloated stories” that later
need to be split into smaller stories.

Teams that have experience using “use cases” find it particularly difficult because use
cases can have many scenarios. These scenarios can vary greatly in business value
and should not be included in a single “use case story”.

To help these clients learn how to structure their stories, we have come up with a set
of four “storyotypes”. We ask them to identify which storyotypes a particular story-
candidate exhibits and if it exhibits more than one, we have them discuss the value of
splitting the story into smaller stories, ideally one for each storyotype.

The focus of this paper is to share our experiences with managing the size of stories
within XP projects. We start by describing the problems in managing the story size.
We then describe the four storyotypes we have encountered on information system
projects and how they are used to mitigate these problems.

The Problem with Stories

To understand the problems that are generally experienced with story granularity, a
quick review of the XP concept of a story is helpful. Stories were first described in [1]
& [2]. The customer is responsible for defining the functionality of the system in short
“stories” of one or two sentences. Each story should describe functionality that has
real business value to the customer. From a planning perspective, the story is the unit
of prioritization, scheduling, and progress tracking that is visible to the customer.

An XP project has frequent small releases, each of which contains a number of time-
boxed iterations. Release planning involves scheduling one or more stories in a
particular release, based on the priority and size of the story. The entire story must be
finished within the release for which it is scheduled otherwise no value is delivered to
the customer. A large story creates problems in three areas: Release Planning, Task
Coordination, and Story Testing.

Release Planning

The first problem that large stories create for an XP team is in release planning. The
larger the stories, the fewer will fit into a release. (Larger stories are also harder to
estimate.) This gives the customer less flexibility to pick and choose what gets done.
Too much functionality bundled into a single story will often squeeze out other
equally important core functionality from early releases thus delaying a meaningful
demo unnecessarily. If the stories remain too large throughout the project essential
core functionality may be squeezed out (differed indefinitely), because the earlier
bloated stories contained non-essential functionality that consumed development
resources.

Task Coordination

Task coordination is the second area in which problems can arise. A large story either
generates a larger number of tasks or larger tasks. We have found the integration of
these tasks can be problematic.

Our XP projects typically do not require micro-management of tasks to the extent that
detailed grouping and dependencies of the tasks do not have to be worked out as long
as the stories are kept reasonably small. With larger stories, extra overhead must be
incurred to orchestrate the sequencing of cohesive tasks to ensure that the team makes
progress towards a common sub-goal at any one point in time within the iteration.

Story Testing

The third problem experienced is that the granularity of the story testing is too large.
The customer is responsible for specifying and signing off on customer tests. As a
story becomes larger, there must be more extensive testing to deal with all the

interactions of the functionality. These interactions are difficult for customers to test
all at once. We have found the completeness of customer tests drops as the number of
tests needed by a story exceeds 10 tests. Smaller stories tend to have more complete
testing than larger stories.

Using Storyotypes to Split Stories

Splitting of stories is described [1] & [2] as one of the basic techniques of managing
scope on XP projects. A story should meet the following criteria:

• Each story should describe functionality that has real business value to the
customer.

• The stories should not have any value if they are further subdivided.

• The functionality described in a single story should have the same
importance to the customer. That is, the relative priority should be the same.

• The functionality should have the same level of certainty. That is, if some
functionality is completely understood and some needs to be discussed in
more detail with the business, there should be at least two different stories
because one is ready to be built now and the other is not.

Further guidelines are provided for the “bootstrap story” (the first story built; a special
case on every project) in [3].

These guidelines help newcomers to XP, but they don’t help them figure out how to
make a story the right size. Those coming from a use case world have a tendency to
want to use the functionality described by a use case as the basis for their stories. But
use cases are the wrong granularity for stories. They are both too big and too small at
the same time.

Use Cases are Too Small. Many use cases cannot be tested independently of other
functionality. That is, while they might be executed independently, the results cannot
be verified without using some other use case to inspect the state of the system. Or,
the use case may depend on some other use case to set up the state of the system
before it can be exercised.

Use Cases are Too Big. While there are many definitions of what constitutes a use
case, most definitions agree that it includes all the possible ways a user can achieve
some goal or desired outcome. Typically, a use case has several or many scenarios.
Some of these scenarios are used very often (the “happy path” scenario and a few
others) while others may be pathological cases that occur so rarely that it is not worth
automating them. That is, they provide insufficient “business value” to justify the
investment to automate them through software.

Usage Scenarios are Better but Not Enough. Use cases typically consist of several
or many scenarios (the “alternate paths” through the use case) that describe how the
use cases works with various prior states of the system. Each scenario can be
considered a candidate for a separate story so that it can be prioritized independently
of the other scenarios. To address the “Use cases are Too Small” problem, they often
need to be combined with scenarios of other use cases to make a truly testable story.
And even scenarios can be too big to build in a single release.

Four Storyotypes

To make it easier for new XP teams to come up with the right story granularity, we
have devised the following four “storyotypes” (short for “story stereotypes”.) These
storyotypes are used to characterize each story and provide a means to split a “bloated
story” into smaller but still valuable pieces. While the following storyotypes
descriptions frequently refer to use cases, these storyotypes can be applied to any
story whether they are more like a use case like or a larger XP story. Use cases just
happen to be the best understood and most broadly used form of prose-based
requirements capture so they form a good point of reference for these storyotypes
descriptions.

Storyotype: New Functionality

This storyotype describes new functionality that is fairly independent of functionality
previously described in other stories. In the use case world, these stories could be
characterized as the happy path of one use case or several interrelated use cases. If
several use cases, the use cases must be co-dependent (like chickens and eggs): it

would be difficult to test one without the other. A common example is the CRUDing
(Create, Read, Update and Delete) of a business entity; it would be very difficult to
update an entity that has not yet been created and it would be difficult to verify the
update was successful without being able to read it. So, the create, update and read of
a basic business entity might be grouped into a single “basic functionality” story.

The use case functionality included in this story should be restricted to a single
scenario, with no conditional processing. The other storyotypes describe additional
functionality related to (extensions of) this basic new functionality.

If a user interface is required as part of this story, the user interface should be “the
simplest UI that could possibly work”. That is, the most basic windows, fields,
buttons, or menu items required to provide the functionality. Anything else related to
the UI belongs in the UI Enhancement storyotype.

Storyotype: Variation of Existing Functionality

Stories with this storyotype describe a variation of functionality introduced in another
story (most commonly, in a New Functionality story.) This can involve one or more
extensions or exceptions (as described in [4]). This is the kind of story that introduces
conditional logic into the software as each of these variations typically involves
checking some condition and executing a different path when the condition is true.

When a Variation story involves several use cases, they will typically be the same use
cases as described in the New Functionality story that the Variation story extends

User interface work related to this storyotype should be restricted to the addition of
any data field to the screens required to enter or view data used to make the decisions.

Storyotype: New Business Rule

New Business Rule stories (often called “input validation” or “edit checks”) extend
New Functionality and Variation stories with additional constraints that need to be
enforced by the software. This kind of story introduces conditional logic into the
software in the form of guard clauses or assertions as each of these variations
typically involves checking some condition and raising some sort of error condition
when the condition is true. Any user interface work included in this storyotype should
be restricted to whatever is needed to communicate the error condition to the user and
the means for them to rectify the proble

Storyotype: User Interface Enhancement

User interface design and development is a complex discipline that can quickly
become a major “time sink” if not managed well. It is one of the areas ripest for scope
creep and the most fruitful for adjusting scope to match available resources. As such,
it is very worthwhile explicitly separating the stories that relate to developing
complex user interfaces from those that develop the underlying business functionality.

Stories with this storyotype should focus on a specific form of enhancement of the
user interface and should not include any business functionality. If there are several
“dimensions” of interface improvement required (e.g. drag&drop, multi-selection list
boxes and voice recognition,) each should have a separate story or stories to enable
the customer to chose the functionality they need most without dragging in other bits
of less important (to them) functionality.

Refactoring Stories Based on Storyotypes

Having identified the storyotypes occurring in each story, we can make conscious
decisions to split the stories into single storyotype stories or leave multiple
storyotypes in some stories. There is a cost to having too many (and therefore too
small) stories; combining them into larger stories results in fewer stories to estimate
and keep track of.

We rarely find it useful to combine stories with different storyotypes. The main
exception to this is when the single-storyotype stories are so small as to only require a
single task to build them. This occurs most frequently during the bug-fixing or minor
enhancements phase of a project.

We do find it useful to combine two stories with the same storyotype (e.g. two
Business Rule stories) as it can be pretty arbitrary whether we call them a single story
or several. Again, the size of the stories is a key determinant; we don’t want the
resulting story to be too large to be completed in a single iteration and we don’t want
to force the customer to “pay for” work they might not want just because it is lumped
in with other functionality in the same story.

Managing User Interface Enhancement Stories

The style of the user interface is a “cross-cutting concern” that spans the different
kinds of functionality provided by the system. Changes to the style of the user
interface can involve visiting a lot of software. The key challenge when building User
Interface Enhancement stories is to avoid excessive revisitation of each part of the
user interface in successive attempts to build a highly usable user interface. It may
take several (e.g. 3 or 4) tries to find a user interface metaphor that the users are happy
with. Without careful management of the process, we may have to apply each User
Interface Enhancement story to every part of the application’s user interface as we
learn what the customer really wants.

We have found the most effective strategy is to build the system with a simple UI
initially and to do some UI enhancement stories targeted on a particular part of the
system. This provides a way to get feedback on the UI technology and style without
making a massive investment in the UI for the entire system. Once the users are happy
with the UI in the pilot area of the system, the same UI paradigm can be applied to the
rest of the system (typically in later iterations or releases). This can greatly reduce the
churning of the UI code those results if the UI evolution involves the entire system.

(This is one area where it really is worthwhile avoiding rework by using Options
Thinking [5] to delay the bulk of the work until the high impact decisions have been
made.)

A Caveat on Combining Stories

Regardless of the storyotypes involved, we would only choose to merge two or more
stories when they have identical business value and the level of specification certainty
is the same. We also want to be sure that the value/certainty won’t change before we
build them. This is an excellent argument for “early splitting; late merging”!

Example

Consider an application that prepares invoices for various customers of a service. To
show the applicability of storyotypes regardless of the approach used to come up with
the stories, we will provide both a “use case” and a “bloated story” description of the
functionality requested for the application. The intention is not that one would first
generate the “bloated story” description from the use cases but rather that either could
act as the starting point for the refactoring exercise.

Use Cases Example

The system includes a number of use cases including: Maintain Customer, Maintain
Billing Cycle, Generate Invoices and Send Invoices. The Maintain XXX use cases
include the ability to create, modify and either delete or obsolete the corresponding
business concept as appropriate.

Use case “Generate Invoices” is used to produce the actual invoices that can then be
viewed, regenerated, finalized and sent. Invoices may contain charges based on
simple subscription (e.g. monthly charges), usage (e.g. so much per unit) and manual
charges (special cases). It can be used to generate the invoices for all customers or
only selected customers.

The user would like to be able to select the customer using a multi-selection list, by
pressing a button to add the customer to the list of invoices to be generated or by
dragging and dropping the customers onto the list of invoices to be generated. They
would also like the system to remember the last group of customers used. And the
system should not allow generating an invoice for a customer who has not yet been
approved by the sales manager.

Use case “View Invoice” allows the user to see the list of available invoices and to
select one for viewing in more detail.

Use case “Finalize Invoice” is used to “lock down” the invoice so that it cannot be
regenerated. An invoice cannot be sent to the customer until it is finalized.

Bloated Stories Example

A team that is not familiar with use cases may have come up with the following
stories for the same functionality.

Story 1: Invoice Generation: Generate an invoice consisting of a single subscription
charge for one or all customer. View the resulting invoice. The user can select the
customers whose invoices are to be generated using a multi-selection list box or using
Add/Remove buttons to move the customers from the All Customers pane to the
Selected Customers pane. The system should remember the last set of customers for
whom an invoice was generated. An invoice cannot be generated for a customer until
the sales manager has approved them. An invoice cannot be generated for a customer
until all mandatory data elements have been provided. These include name, contact
information (mailing address, phone #), title, and company name. Customers can be
created with as little as just a name but they cannot be invoiced.

Story 2: Send invoice to customer: When the user is satisfied with the invoice for a
customer, they may finalize it and then send it to the customer. Once finalized, the
invoice cannot be regenerated or modified in any way.

Story 3: Usage-Based Charges: Generate an invoice that includes usage-based
charges. The usage data is read in from a flat file and the usage rate can be set via a
user interface. Generate the invoice and view it to verify the rate is being applied
correctly. View the resulting invoice.

Characterizing the Bloated Stories using Storyotypes

Consider a story that describes the process of generating an invoice. This “use case
story” includes many storyotypes:

Generating the invoice for all customers is an example of the New Functionality
storyotype. Generating them for a subset of customers is an example of the Variation
of Functionality storyotype.

Because there are three different UI metaphors being described, we can infer that
there are at least two candidates for UI Enhancement stories.

Splitting the Story based on Storyotypes

Now that we’ve identified the various storyotypes, we can refactor the story into the
following single-storyotype stories:

New Functionality: Generate a very simple invoice consisting of a single subscription

charge for the customer. View the resulting invoice. Note: This is an example of a
“bootstrap story” as described in [3].

New Functionality: Finalize and Send an invoice to a customer.

Variation: Generate an invoice that includes usage-based charges. The usage data is
read in from a flat file and the usage is charged at a rate of $1 per unit of usage. View
the resulting invoice.

Variation: The usage rate can be set via a user interface. Generate the invoice and
view it to verify the rate is being applied correctly.

Variation: Use a multi-selection list box of customers to select the customers whose
invoices are to be generated.

Variation: Remember the last set of customers for whom an invoice was generated.

UI Enhancement: Select the customers for whom to generate the invoices (or finalize
the invoice) using a simple dual list box with add/remove buttons UI metaphor.

Business Rule: An invoice cannot be sent to a customer until it has been finalized.

Business Rule: An invoice that has been finalized cannot be regenerated or modified
in any way.

Business Rule: An invoice cannot be generated for a customer until the sales manager
has approved them. This also requires a simple UI to approve the customer (probably
described in the Maintain Customer use case.)

Business Rule: An invoice cannot be generated for a customer until all mandatory
data elements have been provided. These include name, contact information (mailing
address, phone #), title, and company name. Customers can be created with as little as
just a name but they cannot be invoiced.

Business Rule: Only the sales manager can approve the customer. This implies some
kind of login capability so that the system can be aware of who is using the system.
Authentication (that is, security) could be another story.

Combining Stories Based on Storyotypes

Now, we can make conscious decisions to keep each instance of a storyotype in a
separate story or to merge two (or more, but not recommended) storyotypes into a
single story. In our example, we will choose to treat the two business rules related to
when an invoice can be generated as a single story (that still has a single storyotype).
We might call this story “Invoice Generation Business Rules”.

We would only choose to merge them when we know their business value and
certainty is the same and we are sure that they won’t change. For example, we could
choose to include both subscription charges and usage charges in the same invoice
generation story. We would do this knowing the consequences of having done so

rather than out of ignorance.

Conclusions

The story is the foundation for describing, planning, and managing an XP project.
Getting the granularity of the stories right is crucial for making the release planning
game function efficiently. The four storyotypes we present here are a useful tool for
understanding the size and complexity of the stories planning regardless of whether
the stories are based on use cases or are bloated for other reasons. They give the
neophyte XP team a set of heuristics they can use when making decisions about the
how to refactor stories while doing release planning. These storyotypes came from our
experiences using XP while building enterprise information systems; teams working
in other problem domains may find it useful to identify storyotypes specific to their
domain.

Acknowledgements

The author would like to thank all the ClearStream colleagues who shared their
experiences and insights in managing stories on a variety of XP projects and
especially Ted O’Grady who encouraged me and gave me valuable feedback on early
drafts.

REFERENCES
1. Beck, Kent. Extreme Programming Explained: Embrace Change, Addison-

Wesley, 2000; ISBN 201-61641-6.

2. Beck, Kent. Martin Fowler, Planning Extreme Programming, Addison-Wesley,
2001; ISBN 0-201-71091-9.

3. Andrea, Jennitta. Managing the Bootstrap Story in an XP Project, in Proceedings
of XP2001, 2001.

4. Cockburn, Alistair. Writing Effective Use Cases, Addison-Wesley, 2001; ISBN
0-201-70225-8.

5. Poppendieck, Mary and Tom. Lean Software Development, An Agile Toolkit,
Addison-Wesley, 2003; ISBN 0-321-15078-3

