
Test-Driven Porting

Ralph Bohnet 
ClearStream Consulting 
3710 205 5th Ave. SW 

Calgary, AB 
T2P 2V7 Canada 
1-403-264-5840 

ralph@clrstream.com 

Gerard Meszaros 
ClearStream Consulting 
87 Connaught Dr NW 

Calgary, AB 
T2K 1V9 Canada 
1-403-560-2408 

gerard@clrstream.com 

Abstract.  Traditional Test-Driven Development focuses on development of new units (classes) driven by 
programmer-facing unit tests.  This paper describes our experiences when using business-facing tests (also known 
as “story tests”) to guide the porting of a legacy application.  Domain experts specified tests in a tabular format 
using Excel spreadsheets.  Developers automated these spreadsheets in various ways over time: scripts, 
generation of JUnit source code, and Fit.  These tests were run against the legacy system and guided the 
development of the newly ported system.  We found test -driven porting to be an effective way to port a complex 
application.  

Keywords: Porting legacy applications, Test-Driven porting 

1 Introduction  

Test-Driven development is a software productivity enhancing technique that claims to improve 
the quality of code and reduce unused code.  In Test-Driven development the programmer writes 
an automated test before writing the code needed to make the test pass.  Three steps are repeated 
over and over: write an automated test, write enough code to make the test succeed, and clean up 
the code. This sequence is known as “Red, Green, Refactor”. It allows the programmer to focus 
on only writing code for what is needed to pass the test, thereby reducing the potential waste of 
adding extra features that are not needed. Test-Driven development typically applies to 
programmer unit tests.  This process is described in detail in the various books on Test-Driven 
development [1].   
 
Traditional Test-Driven development focuses on development of new individual units (classes) 
driven by unit tests.  This paper discusses the experiences and lessons learned when using 
business-facing tests (AKA Story Tests) to drive the porting of a legacy application. 

1.1 The Legacy Application 

The legacy application was a complex billing system written in VisualAge Smalltalk during the 
late 1990s for a company involved in the energy transportation business.  It calculated charges 
based on the allocation of transported energy to customer contracts and produced a monthly 
invoice for each customers’ account.  The main driver leading to the decision to port the 



application was to replace obsolete technology that made the application expensive to support.  
Other factors included the need to accommodate minor business changes and to integrate with 
newer applications. 
 Support Issues 
The legacy application used Toplink for Smalltalk to provide the relational/object database 
mapping but the Toplink vendor (Oracle) had discontinued support for this version of Toplink.  
Toplink for Smalltalk only worked with Oracle (8i) while the current company-wide standard 
was Oracle 9. This forced IT to support two different versions of Oracle in production.  
The legacy application was complex with over a dzzen algorithms for charge calculations, and 
was comprised of approximately 1000 classes (140K lines of Smalltalk code).  No automated 
regression tests existed, which increased the cost of introducing changes.  In addition, it was 
difficult to recruit support staff with Smalltalk skills.   
 
 Business Changes 
The company’s business and government regulations had changed since the billing application 
was originally written.  The impact of proposed business changes to the system implied 
restructuring it and making significant changes to the Smalltalk code base.  The business was 
reluctant to endorse development of an entirely new application. Their stategy was to  
reengineer/port the application to replace the legacy technology as the first step before 
introducing business changes. 
 
 Integration and Performance Objectives 
Since the application was built, a number of new systems and technologies had been introduced. 
Direct integration with these systems had been avoided, since there were no business benefits to 
support the integration.  “Tactical” solutions had been used to minimize the impact on this 
application. Specifically, the objectives were:  

• Direct integration with a new contracting system, replacing the “tactical” interface that 
provided the contract and rate data. 

• Integration with the company-wide security model to eliminate the need for duplicate 
login.  

• Improving throughput performance of the monthly billing run.  To complete a monthly 
billing run took 12 hours.   

  

2 Project Description 

The overall project strategy that addressed the above issues was to deliver the reengineered 
system in multiple releases grouped into two major phases: 
 

• Phase 1 was to port the existing Smalltalk code to Java.  We estimated 6 months to 
complete phase. 



• Phase 2 was to make business enhancements to the newly ported system. This phase could 
include multiple releases. 

 
In Phase 1, our plan was to port the functionality incrementally and to regression test each 
increment of functionality by comparing the results with those produced by the existing 
Smalltalk system.  Several small enhancements were also included in phase 1, so new functional 
tests had to be developed for them.  We would replace the technology stack as required: 

• Replace the fat desktop client with a browser-based user interface. 
• Upgrade to latest company-wide technology stack: Oracle 9, J2EE, Toplink for Java. 
• Replace the custom-built invoice rendering logic, based on an obsolete, proprietary 

reporting engine, with new PDF invoice generation logic. 
 

The functionality to be ported was organized into “features” such as “Basic Charge Generation”, 
“Prior Period Adjustment (PPA)” and “PPA on PPA”. These features were then selected for an 
iteration based on which feature dependencies had already been satisfied and which ones had 
tests ready to go. Each iteration resulted in one or more features passing its functional tests. 
 
The software development team consisted of 4-6 experienced Java developers and an average of 
1.5 domain experts. The actual users of the system were available for discussions on an as-
needed basis.  The project was organized around 2-week development iterations, with a progress 
discussion and demo to the stakeholders at the end of each iteration. There were daily stand-up 
meetings for project team members. 

3 Testing Challenges 

The challenge was to ensure the business logic in the legacy system was ported correctly.  The 
legacy application was difficult to test.  No automated regression tests existed.  All previous 
testing was done manually.  There was no façade layer surrounding the domain model that a test 
could interact with. The fat client GUI was developed in the proprietary VisualAge for Smalltalk 
workbench (replace with correct name of the framework.)  We discovered that testing tools and 
frameworks for executing the same test on 2 different systems do not exist. 
 

4 Test-Driven Porting Technique Explained 

Our approach to solving these challenges was to develop a suite of regression tests to run against 
the legacy application that identified the system behavior that needed to be ported.   
The same tests would run against the new Java system as it was being ported.  Usually at the 
beginning of porting some functionality, the programmer and domain expert would review the 
relevant domain concepts and the tests.  This allowed the development team to learn the business 
domain and to use a common, ubiquitous language [2].   Next, the programmer would generate a 
JUnit test (more on this later) based on the spreadsheet. The programmer would find the relevant 
starting point in the Smalltalk code and begin to follow the call graph, translating into Java only 
what was needed to pass the test.  This process would continue until the Java code compiled, and 



the test could run.  When the relevant tests passed, the ported functionality was considered 
complete and delivered to the tester.  Figure 1 illustrates this concept of the tests driving or 
guiding the porting effort.   
 

 
 

Figure 1. Spreadsheet-based tests guide the porting of each feature in the legacy system 
 
A detailed discussion how the domain experts specified tests and how programmers automated 
these to run against the legacy system and the newly ported system is described below. 

4.1 Domain experts specify business-facing tests in spreadsheets  

The domain experts specified tests in a tabular format using Excel spreadsheets before the 
porting effort began.   These spreadsheets were business-facing examples of what the system 
should produce (usually an invoice) under certain conditions.   Domain experts were already 
adept at using Excel spreadsheets to specify calculated billing outcomes.  The initial format of 
the spreadsheets followed an approach in a published article [3].  Figure 2 provides an example 
of a spreadsheet containing a test scenario.  The test name and a brief description of the test 
conditions appear at the top of the spreadsheet.  The Prerequisite section identified tests to run 
prior to the execution of the current test.  The Preconditions section identifies the data required 
to run the test.  The Processing section contains the user goal or event to initiate some interaction 
with the system.  The ExpectedResults identifies the results the system produces in one or more 
tables.  
 
UseCase Generate Schedule Charges   
TestScenario FT-R Service  

   
Description Current Billing Period Charges 

DMD Charge is calculated for a contract that is in effect for part of the billing period 
DMD Charge is calculated for Price Point A 

PreConditions         
     
 Customer       
 ID Name Mnemonic TerminationDate 

 2001 FT-R Test Customer FTR 31-Dec-9999 



     
Processing         
     
 GenerateCharges     

 EnterpriseId Status   

 2001 Complete   
     
ExpectedResults       
 CustomerInvoiceForBillingPeriod     
 BillingYear Month Customer InvoiceCreated 
 2003 12 FTR Yes 
     
 CoverPageInvoiceTotals   
 TotalDescription Amount   

 
TOTAL BEFORE 
GST 2,422.25    

 GST 169.56    

 

INTEREST ON 
PAST DUE 
AMOUNTS 0.00    

 
TOTAL AMOUNT($ 
CDN) 2,591.81    

 
Figure 2 - Example of business-facing test specified in Excel spreadsheet. 

4.2 Legacy system results become the standard for the ported system 

After running each test, the legacy system results were captured and became the standard for the 
newly ported system.  The development team created a custom Excel macro that generated a 
XML representation of the test.  Using XSL style sheets, developers transformed this XML 
representation into SQL statements that would be used to populate the database during the 
Preconditions step of the test. 
 

 
Figure 3 Capturing results from spreadsheet test 

 



Developers wrote a test driver using ANT [4] that would feed the legacy system with input from 
the spreadsheet test, run the legacy system, and capture a database snapshot. This is illustrated in 
Figure 3.  The tester would then run the same test against the ported system using the test driver 
and capture the database snapshot.  Both snapshots were normalized to remove any system-
generated unique keys that might differ between the legacy and ported systems.  Then tester 
would compare the two database snapshots and log any differences between the two systems as 
defects in the ported system. This comparison would occur after each increment of functionality.   
 
Although this method was used throughout the porting effort, some disadvantages were soon 
discovered.  It was time-consuming to run both the systems and compare the results.  Some 
manual intervention was required when comparing the database snapshots and also PDF files, 
which made it difficult to run by developers inside of their development IDE or an automated 
build process.  However, the QA/tester used this approach throughout the project and it identified 
numerous defects in the ported system. 

4.3 Automating spreadsheet-based tests by generating JUnit tests 

Developers decided to hand-script some of the spreadsheet-based tests using JUnit to make it 
easier to run the test during the porting effort.    After writing two or three tests manually, it was 
felt significant time could be saved if the JUnit tests could be generated directly from the 
spreadsheets instead of hand-scripting them.  After approximately three man weeks of effort, we 
implemented a JUnit test generator that used POI [5] to read the spreadsheets and generate the 
corresponding JUnit test source code.  These generated JUnit tests became part of the regression 
tests for the delivered ported system. As the spreadsheets are a kind of “domain specific testing 
language”, the test generator had to be evolved throughout the project as new kinds of elements 
were added to the test spreadsheets for specific features.   
 
The development team could now run these generated JUnit tests within their IDE and receive 
immediate feedback on their porting changes.  These test suites became part of the check-in and 
build process.  The automated build process also detected changes in the spreadsheets and 
generated the corresponding new JUnit tests.    The benefit of automating over 300 individual 
spreadsheet tests for the developer certainly outweighed the cost of building a JUnit source code 
generator.   

4.4 Automating spreadsheet-based tests using Fit  

After we completed the port and started the next phase, we replaced the JUnit generated tests 
with Fit [6].  Running the generated JUnit tests required a Java IDE and the error messages were 
stack traces, geared to programmers.  Hence, the domain experts or testers who created the 
spreadsheet-based tests did not run these tests.  We wanted to provide the ability for domain 
experts and testers to run the spreadsheet tests themselves and understand the test results.  Fit 
provides a visual color-coded view of the each output test result in a similar format as the 
original.  FitNesse [7], which is built on top of Fit, provides the ability to easily select a single 



test or a suite of tests and run them against the system inside of a Wiki.  One advantage of this 
approach is the domain experts / testers can run a spreadsheet-based test against the system and 
detect errors in the spreadsheets by themselves without involving a developer.  Automating the 
spreadsheet-based tests using FitNesse required minor changes in the spreadsheets, a custom 
FitNesse plug-in to display the spreadsheet file names and to translate the spreadsheet into 
HTML, and custom Fit fixtures to act as the glue code between the spreadsheet and the system.  

5 Lessons Learned 

Porting complex business logic is worthwhile 
 
The legacy system contained complex algorithms and calculations in the business logic layer.  
Porting this layer rather than rewriting it from scratch proved to be a successful approach.  It 
meant earlier delivery, lower risk, reduced cost, and consequently a greater return on investment.  
The parts of the application that had to be rewritten because of obsolete technology included the 
user interface and the PDF invoice generation logic. For the most part, there was very little 
business logic in these areas. Where business logic did exist, we moved that logic into the 
business logic layer rather than recreate it in the presentation layer. 

Test-driven porting is an effective way to port code 
 
Having an existing application as a reference point is valuable.  However regression tests for the 
legacy application must be created or must exist in order to drive the porting effort.  Without 
these tests, it is impossible to know what logic exists, what is current and what should be ported.   
This suite of automated regression tests became the safety net for developers during the second 
phase when significant business changes were made to the system.  The maintenance staff also 
utilized these automated regression tests as they fixed bugs. 

Test-driven porting results in less code to maintain because it leaves behind unused code 
 
The legacy system had significant amounts of unused code.  Some of the unused code probably 
existed from day of the original system and some of the unused code resulted from business 
changes over many years.  Support staff were reluctant to cleanup unused code due to lack of 
time, resources, and no safety net of automated regression tests.  If the tests did not invoke parts 
of the legacy code, it was not ported.   As a result, there is much less code to maintain in the 
ported system.   

Tests can have defects also. 
 
Initially, developers assumed the tests were correct. When they couldn’t get the tests to pass they 
spent a lot of time digging through the Smalltalk and Java code trying to find porting errors. 
Then, they would finally go to the domain expert who would look at the test error and 
immediately say, “Oh, the test is wrong. It should say …”. We learned that writing correct tests 



is almost as hard as writing correct code and that it was best to involve the domain expert as soon 
as we had any test failures that we didn’t understand.  Providing the domain experts / testers the 
ability to run the spreadsheet-based test against the system would have removed many of the test 
defects even before involving the developer. 

JUnit/xUnit not most effective tool for business-facing tests.  
 
JUnit, like other members of the xUnit family of unit test automation frameworks, raises an error 
and abandons execution of the current test when it encounters the first failure.  Some tests had 
numerous errors in the expected results. This “stop on first failure” behavior was not very 
effective because developers would fix the bug in the test and re-run it, only to discover another 
error further down in the test.   
 
FIT [6] is better suited to business-facing tests because it continues the test execution until 
completion and provides a visual color-coded view of the each output test result. This shows all 
the errors in a test run making it easier to see patterns in the failures. For example, each test used 
a different set of customer names to prevent conflicts. Many of the tests were built using a “clone 
& twiddle” approach. A common test bug was that some of the customer names were missed 
during the “twiddle” phase. So any expected results that referenced the old customer name were 
marked as failures. This was highly obvious when you could see the errors all at once. 

 

6 Project Outcome 

The ported Java system was successfully put into production on schedule with no significant 
bugs.  The end users gave the system a 100% customer satisfaction mark. We are now working 
on Phase 2, which involves enhancing the system to support changes to the business. 

7 Conclusions 

Porting rather than rewriting complex business logic is worthwhile if you have a well-designed 
application.  Having an existing application as a reference point is valuable, but regression tests 
are necessary to drive the porting effort. Without regression tests, it is difficult to know that logic 
exists or is current.  Test-driven porting is an effective way to port the code.  It results in less 
code to maintain because it leaves behind unused code.  JUnit/xUnit is not most effective tool for 
business-facing tests.  FIT [6] is better suited to these tests, because test execution continues until 
completion and provides a visual color-coded view of the each output test result. 
 

8 Acknowledgements 

We’d like to thank our client who graciously allowed us to write about this experience. The work 
described in this paper was significantly improved by the contributions of Lynne Ralston, 
Jennitta Andrea, Geoff Hardy, and Shaun Smith. 



 

9 REFERENCES 

1. Beck, Kent.Test-Driven Development:By Example, Addison-Wesley, 2003; ISBN 321-
14653-0 
Astels, David.  Test-Driven Development: A Practical Guide, Prentice Hall, 2003; ISBN 13-
101649-0 

 
2. Evans, Eric.  Domain-Driven Design, Addison-Wesley, 2004; ISBN 321-12521-5 
 
3. Andrea, Jennitta, “Generative Acceptance Testing for Difficult-To-Test Software”, XP2004 

Conference, 2004 
 
4. ANT, http://ant.apache.org 
 
5. POI, http://jakarta.apache.org/poi 
 
6. FIT, http://fit.c2.com/ 
 
7. FitNesse, http://www.fitnesse.org 


