
Agile Regression Testing Using Record & Playback

Gerard Meszaros
ClearStream Consulting
87 Connaught Dr NW

Calgary, AB
T2K 1V9 Canada
1-403-210-2967

gerard.meszaros@acm.org

ABSTRACT
There are times when it is not practical to hand-script
automated tests for an existing system before one starts to
modify it (whether to refactor it to permit automated
testing or to add new functionality). In these
circumstances, the use of “record & playback” testing
may be a viable alternative to handwriting all the tests.

 This paper describes experiences using this approach and
summarizes key learnings applicable to other projects.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing Tools – record
& playback; robot user.

General Terms
Verification.

Keywords
Automated Testing, Acceptance Test, Functional Test,
JUnit, Patterns, Best Practices, User Interface, Robot
User, Record, Playback, XML

1 INTRODUCTION
The Business Problem
Many of us “inherit” code from the original developers
and need to fix or enhance it. This may be for the purpose
of minor changes (the so-called “maintenance phase” of a
system’s lifecycle), or it may be to re-engineer the system
in a large-scale way.

In either case, it is highly desirable to discover that your
changes have had unexpected consequences (e.g., ‘bugs”)
long before you deliver the code to your customers.
During maintenance, there is a large potential for such
defects to sneak in, especially when the maintenance
developers are not intimately familiar with the code. And

the less well structured the code, the higher the likelihood
of introducing more defects.

Regression Testing
The act of testing the software to ensure that it hasn’t
changed is called “regression testing”. In most cases, it is
prohibitively expensive to do proper manual regression
testing of the software after every bug fix. As a result,
many maintenance teams play a continuous game of
Russian Roulette by delivering the software after running
only a subset of the complete test suite.

Automated Regression Testing
Automated regression testing is the most cost-effective
way of doing a full regression test run after each bug fix.

Many agile development methods advocate “test driven
development” [1] (or “test first”) in which you write
automated unit tests before the code it tests. This results
in having a safety net of automated tests available to
regression test your application during maintenance and
extensions. But what if your application wasn’t built “test
first”?

XP (eXtreme Programming) [2] advocates writing a new
automated test to expose the bug before fixing it. This test
becomes part of the regression test suite to ensure that the
bug never comes back. After all, having the test would
have prevented it!

Why Not Use XUnit?
XUnit purists would propose writing XUnit [10] tests to
verify the system functionality before it is refactored or
modified. But it is very difficult to write cost-effective
XUnit tests to verify the system functionality if the
system wasn’t designed with testability in mind. Most
systems need to be refactored for testability before XUnit
tests can be written. But how can you ensure that the
refactoring hasn’t introduced bugs? This “Catch-22” was
the motivation behind trying to use Robot User testing on
several recent projects.

2 R&PB TEST AUTOMATION ISSUES
The “robot user” approach to test automation predates

Copyright is held by the author/owner(s)
OOPSLA 2003, Oct 26-30, 2003, Anaheim, California.
ACM 1-58113-751-6/03/0010

XUnit-style testing by many decades. Test automation
folklore is rich with horror stories of failed attempts to
automate testing using “record & playback (R&PB).

The “robot user” approach to test automation had received
enough bad publicity in past attempts at test automation
that we found it to be a hard sell when we proposed it on a
recent project. We had to convince our sponsors that “this
time it would be different” because we understood the
limitations of the approach and that we had a way to
avoid the pitfalls.

The “Fragile Test” Problem
Tests automated using the “robot user” approach often fail
for seemingly trivial reasons. It is important to understand
the limitations of this approach to testing to avoid falling
victim to the common pitfalls. These include Behavior
Sensitivity, Interface Sensitivity, Data Sensitivity and
Context Sensitivity. Many of these issues also apply to
XUnit-based test automation (see [8].)

Behavior Sensitivity
Tests are intended to verify the behavior of the system. So
if the behavior of the system is changed (e.g., the
requirements are changed and the system is modified to
meet the new requirements), we would naturally expect
any tests that exercise the modified functionality to fail
when they are replayed. One would hope that a small
change in requirements would lead to a small number of
tests failing. The problem is when other tests also fail
because of the changes. This is typically because tests
must get the system into a known starting state and this
may require using the modified functionality.

Interface Sensitivity
Commercial “robot user” test tools typically interact with
the system via the user interface. Seemingly minor
changes to the interface can cause tests to fail even though
a human user would say the test should still pass. This is
in large part what gave test automation tools a bad name
in the past. This has also been an area of significant
technological improvement in the commercial testing
tools in recent years.

Data Sensitivity
All tests assume some starting point; these are often
called the “pre-conditions” or “before picture” of the test.
In information systems, this is defined in terms of data
that is already in the system. If the starting point (i.e., the
database contents) changes, the tests may fail unless great
effort has been expended to make the tests insensitive to
the data being used.

Context Sensitivity
The behavior of the system may be affected by the state
of things outside the system. This could include the states
of devices (e.g., printers, servers) other applications, or

even the system clock (i.e., the time and/or date of test.)
In some ways, this can be viewed as a form of Behavior
Sensitivity except that the cause is not a change in the
program logic but rather a change in the context in which
the system is embedded. While the symptoms may be the
same, the cause is completely different and needs to be
addressed in different ways.

3 TEST AUTOMATION CHOICES
As part of our analysis of the choices available to us, we
came up with a way of classifying the approaches to test
automation. This helped us better understand why certain
approaches worked better in some circumstances than
others.

There is more than one way to automate tests. The
approaches can be classified using a 3 dimensional grid.
The three dimensions are:

• Granularity of the system under test (SUT). The
SUT can be a single unit (module, class or even
method), a component, or the entire system.

• Test Creation Approach. The two main options are
“Record & Playback” (R&PB) and hand-scripted
tests.

• Test Interface. The two main options are testing via
the user interface or testing via an internal software
interface or API.

In theory, there are 2x2x3 possible combinations but it is
possible to understand the primary differences between

the approaches by looking at the front face of the cube.
Some of the four quadrants are applicable to all levels of
granularity while others are primarily used for system
testing.

Upper Right Quadrant—Modern XUnit
The upper right quadrant of the front face of the cube is
“modern XUnit”. It involves hand-scripting tests that
exercise the system at all 3 levels of granularity (system,
component or unit) via internal interfaces. A good
example of this is unit tests automated using JUnit [6].

R&PB Script

system
component

unit

UI

API
Means of
Test -
SUT

Interaction

Way of Capturing Tests

SU
T

Gr
anu

lar
ity

R&PB Script

system
component

unit

UI

API
Means of
Test -
SUT

Interaction

Way of Capturing Tests

SU
T

Gr
anu

lar
ity

Figure 1. The 3 dimensions of test automation

Figure 2. The 4 quadrants of test automation

Built - in
R&PB

Modern
XUnit

Robot
User

-

API

UI

Record & Playback Hand - built Scripts
Way of Capturing Tests

- Very fragile
- Not Maintainable
- Cannot be pre - built
+ No special skills
+ API not required
- Only Complex,

flakey, expensive
tools

+ Robust
+ More maintainable
+ Can be pre - built
- More skills req’d
- API required
+ Simple, cheap tools

+ Somewhat Robust
- Not Maintainable
- Cannot be pre - built
+ Fewer skills req’d
- API required
- No COTS tools

- Somewhat fragile
- High maintenance
- Can be pre - built
- More skills req’d
+ API not required
+ Simple, cheap tools
- or Complex, flakey,

expensive tools

Scripted
UI Tests

Built - in
R&PB

Modern
XUnit

Robot
User
Means of
System -
Test
Interaction

API

UI

Record & Playback Hand - built Scripts
Way of Capturing Tests

- Very fragile
- Not Maintainable
- Cannot be pre - built
+ No special skills
+ API not required
- Only Complex,

flakey, expensive
tools

+ Robust
+ More maintainable
+ Can be pre - built
- More skills req’d
- API required
+ Simple, cheap tools

+ Somewhat Robust
- Not Maintainable
- Cannot be pre - built
+ Fewer skills req’d
- API required
- No COTS tools

- Somewhat fragile
- High maintenance
- Can be pre - built
- More skills req’d
+ API not required
+ Simple, cheap tools
- or Complex, flakey,

expensive tools

- Very fragile
- Not Maintainable
- Cannot be pre - built
+ No special skills
+ API not required
- Only Complex,

flakey, expensive
tools

+ Robust
+ More maintainable
+ Can be pre - built
- More skills req’d
- API required
+ Simple, cheap tools

+ Somewhat Robust
- Not Maintainable
- Cannot be pre - built
+ Fewer skills req’d
- API required
- No COTS tools

- Somewhat fragile
- High maintenance
- Can be pre - built
- More skills req’d
+ API not required
+ Simple, cheap tools
- or Complex, flakey,

expensive tools

Scripted
UI Tests

Bottom Right Quadrant—Scripted UI Tests
A variation on “modern XUnit” is “Scripted UI Tests”
with the most common examples being the use of
HttpUnit[5], JfcUnit or similar tools to hand-script tests
using the user interface. (It is also possible to hand-script
tests using commercial “Robot User” tools.) These
approaches would all fit into the bottom right quadrant.
Where the entire system is being tested, this would be at
the system test level of granularity. They could also be
used to test just the user interface component of the
system (or possibly even some UI units such as custom
widgets) but this would require stubbing out the actual
system behind the UI.

Bottom Left Quadrant – Robot User
The bottom left quadrant is “Robot User”. During
“recording”, the user interacts with the system manually
via the User Interface (UI) while the tool records the
interactions. During “playback”, the tool interacts with
the system via the UI to “replay” the original session.
This is the approach employed by most commercial test
automation tools. This approach is primarily focused on
testing the entire system, but like “scripted UI Tests”,
could be applied to the UI components or units if the rest
of the system can be stubbed out.

Top Left Quadrant – Internal R&PB
The top left quadrant involves creating a record &
playback API somewhere behind the user interface. This
is then used to record everything that affects the system
state into a file that can later be used for input. This
quadrant is not well populated with commercial tools but
is a feasible option when building R&PB into the
application itself.

4 CASE STUDIES
The conclusions of this paper are based on using “record
and playback” testing on a series of projects. While all
used R&PB testing as a key part of their test strategy, they
used several different approaches to implement the R&PB
testing.

Case 1 – Project “Billy”
This project involved the construction of a prototype for a
billing system. The project team was whoever was
available at the time (sitting “on the bench”.) There were
a number of architectural objectives that needed to be
demonstrated. The application framework was built “test
first” complete with both unit tests for each class and
functional tests that verified the system functionality
exposed via an application façade. The development
approach was eXtreme Programming with some minor
local adaptations.

At one point in the project, a potential customer asked to
see a demo. As it is very difficult to demonstrate the
architecture of a system, it was decided that a front end
(user interface) was needed to show off some of the
features of the architecture.

The web-based demo UI was built in a hurry. It used a
Transform View Architecture [4] with a simple JSP front
page from which all the functionality was accessed. All
other screens were generated from XML using XSLT
under the control of a generic servlet that looked up the
URL, found the application method to invoke, invoked it
to get the results as XML, and transformed the results into
HTML with the XSLT corresponding to the URL. There
were a few unit tests for a few of the classes but no tests
that verified that the UI as a whole was functioning
properly.

After the demo, there was some changeover in the project
staff. The incoming developers had trouble understanding
the structure of the UI software and decided to clean it up.
But retesting the UI after each structural change was
cumbersome and time consuming. The team, seeking to
work smarter rather than harder, looked for a way to
automate the retest.

Our first attempt was to use HttpUnit to script test for the
web server. Submitting the URL’s was pretty
straightforward but interpreting the HTML that came
back was challenging. The tests had to be coded to look
for certain structures on the web page and examine certain
table cell values to verify correctness of the results. It
became clear very quickly that this approach would take
much too long to do thorough regression testing.

Test Architecture
Since the refactored software was intended to produce
exactly the same HTML from the input XML, we
surmised that it should be possible to record the sequence
of URLs posted and the corresponding HTML received in
response so that we could quickly replay a previously
recorded session. Because this was an in-house project
being done on “bench time”, we didn’t explore the use of
commercial “robot tester” tools. Instead, we found a few
strategic places in the generic servlet where we could
write the incoming URL, the XML returned by the

system, and the HTML produced by the XSLT transform
into an XML file.

For playback we used HttpUnit to emulate the browser. It
would read one <interaction> element from the playback
file and submit the contents of the <request> element to
the web server. It then took the HTML it got back and to
compared it with the contents of the <expected-html>
element from the recorded session. If they matched, it
would read the next <interaction> element from the file.
When it reached end of file without any comparisons
failing, the test passed.

Because we expected the refactored code to produce
exactly the same HTML, we could use JUnit’s
assertEquals(String expected, String actual) to do the
comparison. However, whenever we had a failure, we had
to scroll through the expected and actual strings manually
in side-by-side object inspectors to find out what had
changed. So we wrote a custom assertion [8],
assertEqualsWithCursor(…), that would determine the
reason for failure and report on what was different as part
of the JUnit error log.

Why It Works
This approach worked very well because our billing
system ran entirely in memory. All the data for each run
was loaded from files as during the demo. This avoided
the data sensitivity problem. To avoid context sensitivity,
the system clock used by the application was controlled
from the demo dashboard (which was part of what was
recorded) so it was always the same and we did not have
to worry about date-related variability in the test results.

We accepted a certain amount of UI sensitivity as the cost
of doing business. When we made changes to the
application that resulted in the HTML changing, we
would manually run through the tests with recording

turned on. Once we verified the results were correct, we
replaced the original playback file (which included the
expected results) with the newly recorded one. As long as
we ensured that we did not change the visible
functionality, refactoring benefited from the safety net of
our regression tests.

Return on Investment
It took approximately 1 person day (8 hours) to build the
recording capability into the system and the data-driven
test that read the recording file.

It took about 15 minutes to retest all the demo
functionality reasonably rigorously visiting each page and
exercising each function, verifying that the correct page
was reached, but not inspecting the calculated data except
for a cursory “eyeballing”. The tests were run several
times per hour for several weeks of development. This
would equate to approximately 160 (2*8*5*2)
verification cycles. Done manually, this testing would
have taken about 40 hours (assuming the developers could
have been convinced to execute them manually this many
times.) More than likely, the tests would have been run a
lot fewer times and the cost would have been hidden as a
“quality problem”. ROI: approximately 5:1.

Case 2 – Project “Safety”
This project involved porting and re-engineering a rail
traffic control system. The original system was built and
deployed on OS/370 and was later ported to DOS and
then OS/2. The announcement of end of support for OS/2
forced the system’s owner to take action. Initially, the
intent was to purchase a replacement system from a third-

HttpUnit

UI
Logic

Business
Logic

Component

Recording
F/W

UI BitUI Bit

Business
Logic

Component

Playback
F/W

Test Recording:

Test Execution:

(Omitted/disabled
in production)

UI Driver

Playback
Test

UI
Logic

(Web Server)

User

Figure 3. Test Architecture for Project Billy

<CommandLog>
 <Exchange>
 <Request>action=generateInvoices</Request>
 <FinalResult>/demodashboard.jsp</FinalResult>
 </Exchange>
 <Exchange>
 <Request>action=getAllInvoices </Request>
 <IntermediateResult>
 <?xml version="1.0" encoding="UTF-8"?>
 <ArrayList>
 <invoice number="24"> ...</invoice>
 </ArrayList>
 </IntermediateResult>
 <FinalResult>
 <html>
 <head><title>DisplayInvoices</title></head>
 <body bgcolor="#FFFFFF"> ... </body>
 </html>
 </FinalResult>
 </Exchange>
</CommandLog>

Figure 4. Recorded Script for "Billy" (excerpt)

party, but it soon became apparent that this would be a
very expensive and time-consuming approach because of
the extensive customization the system would require to
comply with additional (beyond industry standards)
business rules embedded in the current system.

An alternative approach of re-engineering the existing
system was chosen. Based on the previous releases of the
system, it was recognized that retesting the changes made
to the system would be very resource intensive. The sheer
number of test conditions that had to be verified made
hand-written test automation a non-starter.

The project used a traditional “architecture-centric”
development process with incremental development that
demonstrated a working version of the system every 4-8
weeks with ever increasing functionality. The architecture
was defined largely up front and detailed design was done
at the beginning of each increment of functionality.

Test Strategy
Because the re-engineered system was expected to work
the same way as the original system (“ideally, the user’s
won’t know it’s a different system”), we proposed using it
as a “gold standard” against which the new system would
be compared. We would record tests by exercising the
old system and recording which screens and fields were
visited, what choices the system offered to the user and all
the user inputs. Then we could play the tests back against
the new system and verify that it behaved the same way.

Unfortunately, the existing system used a text-based
window user interface. (Dialog boxes were drawn on the
screen using the character symbols for vertical bars,
horizontal lines and corners.) There were no commercial
record & playback (R&PB) tools available that supported
this technology let alone on both OS/2 and Windows
2000. This forced us to build our own R&PB capability
into the system.

Test Architecture
The system was built before it became commonplace to
separate the business logic from the user interface code.
As such, there was no “application façade” (internal API)
that could be hooked for the test tool. The code was
organized as a large number of field processing modules.
The business logic was mostly scattered throughout these
modules interspersed with the UI code.

The R&PB tool was built into the user interface of the
system by placing R&PB hooks wherever the application
asks the user for input and recording the information into
an XML file. Much of recording could be done by
hooking utility functions called from many places in the
code, but we sometimes had to add an extra parameter so
the utility would know the context from which the field
name could be generated. In other cases, we had to place
hooks into the processing code for the fields themselves.

For playback, we replaced the main menu driver of the
system with a loop that read the commands from the
playback file. Whenever the system visited a field, our
hooks did a callback into the R&PB framework to retrieve
the recorded “user input” and to compare the system
outputs with the expected outputs. The results of the
comparison were captured in an annotated version of the
playback file that include the status of each field (either
OK, Missing, or Surplus). The resulting XML file was
formatted using a style sheet to resemble the output from
a FIT test [3].

We built a plug-in for TestDirector [7] using the “Open
Test Architecture” so that our re-engineered system could
be launched from within a TestDirector test suite for
completely unattended execution of test playback. The
plug-in would copy the playback from TestDirector’s
repository to the local file system, launch our application,
retrieve the results file and other log files and put them
back into the TestDirector repository. Based on the
outcome, it would mark the tests as either passed or
failed.

Why It Works
Behavior Sensitivity was avoided because the system

User
Interface

User
Interface

Business
Logic

Component

Recording
F/W

UI BitUI BitUI Bit

Business
Logic

Component

Playback
F/W

UI BitUI BitUI Bit

Test Recording:

Test Execution:

Omitted/Disabled
in production:

User

Figure 5. Test Architecture for Project "Safety"

 if (playback_is_on()) {
 choice = get_choice_for_playback(dialog_id, choices_list);
} else {
 choice = context->menu_choice;
}

display_dialog(choices_list, choice, row, col, title, key);

if (recording_is_on()) {
 record_choice(dialog_id, choice_list, choice, key);
}

Figure 6. Sample R&PB Hook for "Safety"

functionality is essentially frozen for the duration of the
re-engineering project. Some minor changes are being
made to the system, but care is being taken to ensure that
the changes will not affect R&PB testing.

Interface Sensitivity was avoided by building the R&PB
capability directly into the application. Cosmetic changes
will not affect the accuracy of R&PB testing because the
R&PB hooks are behind the logic that formats the screen
and parses the inputs.

Data Sensitivity was avoided by carefully controlling the
data that the system is tested with. All tests start with a
known starting point in the database. The testing harness
records the version of the data along with the test and
automatically launches the system with the same version
of data when the test is replayed.

Return on Investment
The R&PB capability was built at a cost of approximately
half a million dollars over the course of 8 months. From
past experience, it was expected that the number of
manual test cycles required to validate the software would
be about 5 with a duration of 3 months and 5 resources.
This would cost about $600K (5*3*5*$8K). The planned
best-case expectation for the project with R&PB testing is
1 test cycle with a second cycle planned as a contingency.
(Test planning costs are omitted because they would be
similar for either approach.) This is a reduction of about 4
test cycles at $120K each (total 480K) and an elapsed
time of 1 year. Additional savings come from being able
to scale down the project team to a maintenance team a
year earlier. So there is a net cost reduction within the
current project in addition to delivering to the business

one year earlier and removing a great deal of personal
stress for the key decision makers. Direct ROI: 5:6.
Indirect ROI: Priceless.

Status
This project is in the later stages of development. The test
cycles are expected to start in early 2004.

Other Considerations
Initially, the cost of building the test tools and recording
the tests was justified solely for the duration of the re-
engineering project. We expected it to pay for itself
within the first release of functionality. We also
anticipated that an XUnit-based approach would be
phased in to replace the R&PB testing once the system
was refactored to be testable.

Now that the R&PB capability is mostly built, we feel
that if may be possible to continue to use the R&PB tests
for many years to come. The track data versioning allows
the existing tests to be used with newer versions of the
system as long as the rules don’t change. We have also
devised ways to rejuvenate tests when the rules do change
that allow much of the initial investment to be retained.
New tests will still need to be planned and recorded for
new rules, but most existing tests’ expected results can be
regenerated from the actual results once any test failures
are verified by the business users as being expected based
on the rules change.

Case 3 – Project “Inform”
This project involves the construction of a web site that
provides the public with information about government
and non-profit services. Data stewards enter information
about their organizations and services into the system
through the administration interface. Public health nurses
and general public users use the public interface to find
the services.

The project used an agile development approach
(eXtreme Programming with some minor local
adaptations) and released a working system to the
stakeholders every 3 weeks.

Test Strategy
This project built JUnit automated tests for all business
functionality right from the start. As a result, very few
bugs were being found in the business logic portion of the
system. But the user interface logic was problematic. The
Struts [9] code used to analyze the user inputs and build
the response HTML was having bugs appear in each new
release. As a result, we decided to use a commercial
R&PB tool, Astra QuickTest [7] to verify the Struts code.
Since we already had functional tests for all functionality,
the R&PB tests were focused on visiting each page and
verifying that all buttons and tabs took the user to the
right place and that the screens were formatted correctly.

<interaction-log>
 <commands>
 <command seqno="2" id="Supply Create">
 <field name="engineno" type="input">
 <used-value>5566</used-value>
 <expected></expected>
 <actual status="ok"/>
 </field>
 <field name="direction" type="selection">
 <used-value>SOUTH</used-value>
 <expected>
 <value>SOUTH</value>
 <value>NORTH</value>
 </expected>
 <actual>
 <value status="ok">SOUTH</value>
 <value status="ok">NORTH</value>
 </actual>
 </field>
 </command>
 </commands>
</interaction-log>

Figure 7. Results XML for “Safety” (excerpt)

In effect, we were using the R&PB test tool to do
component testing on our UI.

Test Architecture
During recording, the commercial R&PB tool is started
by the user who then interacts with the system via the web
browser while the tool records the interactions During
playback, the R&PB tool emulates a user interacting with
the browser that communicates with the web server being
tested. The R&PB tool does not interact directly with the
system under test.

Why It Works
Behavior Sensitivity was somewhat avoided by focusing
on the User Interface logic. The tests were designed
specifically to verify the screen flows, not the business
logic (which is tested via the JUnit functional tests.) They
avoided looking at the data on the screens to make them
less sensitive to changes in the database.

Interface Sensitivity was accepted as the cost of
automating these tests. It is accepted that we may need to
re-record some of the tests whenever the user interface
changes, but this is still better than rerunning all the tests
manually all the times the interface hasn’t changed. The
time to record a test is only 10-20 minutes per script
longer than to run the test manually. Most of the
additional effort is tweaking the sensitivity of the test
checkpoints and removing any automatically recorded
checkpoints that cause the test to fail when it is rerun.
(The buttons often invoke JavaScript that invokes hidden
buttons. QuickTest [7] records both button presses but
only the visible button test can be played back so the
hidden button press must be removed manually.)

Data Sensitivity was avoided by carefully controlling the
data that the system is tested with. All tests start with a
known starting point in the database.

Context Sensitivity was avoided because the system has
no interactions with other systems and very little (if any)
of the behavior is time/date sensitive.

Return on Investment
At printing deadline, it is still too early in the project to
project actual dollar savings, initial indications are that
the use of the R&PB tool for regression testing will save
considerable effort due to the detection of UI logic
changes much earlier in the development cycle.

Status
This system is expected to be in production in October
2003.

5 RECOMMENDATIONS
Record and Playback testing should be considered when:

• You need to refactor a legacy system to make it
amenable to XUnit-style hand-scripted tests and you
feel it is to risky to do so without having regression
tests.

• You cannot afford the time or cost of hand-scripting
tests

• You do not have the programming skills required to
hand-script the tests.

Record and Playback testing should be avoided when:

• You cannot fix the behavior of the system by
freezing/snapshot the data on which the system will
operate.

• The behavior of the system is expected to change
significantly between when the tests can be recorded
and when they will be played back.

• If you want to use the automated tests as a
specification and there is no existing system that can
be used for recording the tests.

Critical Success Factors
Given that you have decided to give robot user testing

Figure 8. Test Architecture for “Inform”

R&PB Tool

Web
Browser

Business
Logic

Component
Playback

Tool

Test Recording:

Test Execution:

UI
Logic

(Web Server)

R&PB Tool

Web
Browser

Business
Logic

Component

Recording
Tool

UI
Logic

(Web Server)

User

User

Browser("Inf").Page("Inf").WebButton("Login").Click
Browser("Inf").Page("Inf_2").Check CheckPoint("Inf_2")
Browser("Inf").Page("Inf_2").Link("Taxonomy Linking").Click
Browser("Inf").Page("Inf_3").Check CheckPoint("Inf_3")
Browser("Inf").Page("Inf_3").Link("Maintain Taxonomy").Click
Browser("Inf").Page("Inf_4").Check CheckPoint("Inf_4")
Browser("Inf").Page("Inf_4").Link("Add").Click
wait 4
Browser("Inf_2").Page("Inf").Check CheckPoint("Inf_5")
Browser("Inf_2").Page("Inf").WebEdit("childCodeSuffix").Set "A"
Browser("Inf_2").Page("Inf").WebEdit("tax.desc").Set "Top Level"
Browser("Inf_2").Page("Inf").WebEdit("tax.defn").Set "Top Level"
Browser("Inf_2").Page("Inf").WebButton("Save").Click
wait 4
Browser("Inf").Page("Inf_5").Check CheckPoint("Inf_5_2")
Browser("Inf").Page("Inf_5").WebList("selTaxCode").Select "Top"
wait 4
Browser("Inf_2").Page("Inf_2").Check CheckPoint("Inf_2_2")
Browser("Inf_2").Page("Inf_2").WebEdit("child").Set "B"

Figure 9. Recorded Script for "Inform" (excerpt)

tools a second chance, what features do you need to look
for in the testing tool? And what techniques do you need
to apply to system development and test automation to be
successful?

Designing the system for context independence.
If the behavior of the system depends on any outside
factors such as the current date or time, you must be able
to control the system context so that the same context is
used for each test run. For example, configure the current
system date at the start of each test run.

Tool Provides Means to Initialize System
Tests must be able to start up the system with the known
starting point. For example, wipe out the database and
reloading it with a new copy of the standard data.

Functionality Stability
R&PB testing can only be used to good effect when a
significant portion of the applications functionality is
expected to be unaffected by the next release. Any tests
that encounter modified functionality must be rerecorded
as the functionality is verified manually.

User Interface Insensitivity
It must be possible to record tests in a way that cosmetic
changes to the UI do not cause tests to fail. Many of the
commercial test tools allow you to set the sensitivity of
the checkpoints they record. This is just one of the ways
tests of the business logic can be made less sensitive to UI
changes. But these controls are what makes commercial
tools more complicated and therefore harder to learn.

UI-Insensitive Business Logic Tests
All tests that verify business logic should be recorded in a
way that minimizes UI Sensitivity.

Business Logic and Data Insensitive UI Tests
A separate set of tests (either manual or automated)
should be used to verify the UI has not changed. These
tests should not care about the business logic or the data
in the database.

A useful trick is to record tests with different sensitivity
settings; these can then be used to do “defect
triangulation” by narrowing down where the defect is
located. For example, if UI sensitive tests fail while UI
insensitive tests pass, the change must be in the UI.

Limited Lifetime
Recognize that robot user tests will have a limited
lifetime. They will not survive certain kinds of changes to
the user interface or the business logic inside the system.
Make sure your strategy for managing the tests allows
you to identify the those tests that will be affected and
which will need to be either discarded, rerecorded or

superceded by newly scripted tests. One good way of
doing this is to cross-reference the tests with the
requirements by using a test management tool such as
Test Director [7].

6 CONCLUSION
Sometimes, R&PB testing is your only viable option
given various project constraints. E.g., when dealing with
a legacy system that does not have automated tests,
Record & Playback style testing is a cost effective way to
create regression tests that can be used to verify that
design changes to the system do not introduce defects.

R&PB testing tools and techniques have matured
significantly over the years and can now avoid many of
the potential pitfalls when used properly.

When commercial R&PB test automation tools are
unavailable, too costly, or too undependable, it is feasible
to build the R&PB capability right into the system under
test.

7 ACKNOWLEDGEMENTS
We would like to thank the many clients who gave us the
opportunities to gain the experiences described in this
paper. Also, Neil Kosman of Mercury Interactive who
was always available to dig for information whenever we
needed help using the Open Test Architecture. And
Jennitta Andrea, Ralph Bohnet and Shaun Smith, who all
provided invaluable feedback on various drafts.

8 REFERENCES
[1] Beck, Kent. Test Driven Development: By Example,

Addison-Wesley, Boston MA, 2002

[2] Beck, Kent. Extreme Programming Explained,
Addison-Wesley, Boston MA, 1999

[3] Cunningham, Ward. FIT: Functional Integrated
Test. http://fit.c2.com.

[4] Fowler, Martin. Patterns of Enterprise Application
Architectures. Addison-Wesley, Boston MA, 2002.

[5] HttpUnit and JfcUnit user interface testing
frameworks: http://JUnit.org

[6] JUnit testing framework: http://JUnit.org

[7] Mercury Interactive Software. TestDirector test
management & QuickTest test automation software.
http://www-svca.mercuryinteractive.com/products/

[8] Meszaros, G. et al. “Test Automation Manifesto” in
Proceedings of XP Universe 2003 (New Orleans,
LA, August 2003)

[9] Struts web-based user interface framework
http://jakarta.apache.org/struts/index.html

[10] XUnit family of testing frameworks:
http://www.xprogramming.com/software.ht

