
Page 1 of 1

Tutorial Exercises for:

xUnit Test Patterns and Smells

Presented by Gerard Meszaros
xunitTutorial@gerardmeszaros.com

Page 1 of 3

Exercise CS1 - Result Verification

Situation
You have just inherited maintenance of the Flight Management System. The good news is
that there are automated unit tests. The bad news is that most of the tests look something
like these tests.

Instructions:
Examine the code in the handout and determine what code smells you are seeing.

Discussion Questions:
• Which Code Smells are we having?
• What are the underlying root causes?
• Which Patterns can we apply to alleviate them?

Page 2 of 3

Test Code
public void testGetFlightsByOriginAirports () throws Exception {
 // create 3 flights from one airport to two anonymous airports and one flight beyond:
 // b<-a->c->d
 FlightDto expectedFlight1 = createNewFlightBetweenTwoNewAirports(); // a ->b
 FlightDto expectedFlight2 = createNewFlightToNewAirportFrom(expectedFlight1.origAirport); // a->c
 FlightDto expectedFlight3 = createNewFlightToNewAirportFrom(expectedFlight2.destAirport); // c ->d

 // Test 1: no flights from the destination of Flight 1:
 // Exercise SUT:
 List flightsFromDest1 = facade.getFlightsByOriginAirport(expectedFlight1.destAirport);
 // Verify outcome:
 assertTrue("Should not be any flights from dest of flight1", 0==flightsFromDest1.size());

 // Test 2: one flight from the destination of Flight 2:
 // Exercise SUT:
 List flightsFromDest2 = facade.getFlightsByOriginAirport(expectedFlight2.destAirport);
 // Verify outcome: # of flights
 if (1==flightsFromDest2.size()) {
 // Verify attributes of only FlightDto:
 FlightDto onlyFlight = (FlightDto)flightsFromDest2.get(0);
 assertEquals("flight #", expectedFlight1.flightNumber, onlyFlight.flightNumber);
 assertEquals("origAirportId", expectedFlight1.origAirportId, onlyFlight.origAirportId);
 assertEquals("destAirportId", expectedFlight1.destAirportId, onlyFlight.destAirportId);
 assertEquals("origCity", expectedFlight1.origCity, onlyFlight.origCity);
 assertEquals("destCity", expectedFlight1.destCity, onlyFlight.destCity);
 assertEquals("equipType", expectedFlight1.equipmentType, onlyFlight.equipmentType);
 } else {
 fail("should be one flight from airport");
 }

 // Test 3: Two flights from the common origination airport:
 // Exercise SUT:
 List flightsFromOrig = facade.getFlightsByOriginAirport(expectedFlight1.origAirport);
 // Verify Outcome:
 // 1st, verify correct number of flights

Page 3 of 3

 if (2==flightsFromDest2.size()) {
 // 2nd, verify 1st flight is the one we expected
 // (let’s hope they come back in the right order!)
 FlightDto firstFlight = (FlightDto)flightsFromDest2.get(0);
 assertEquals("flight #", expectedFlight1.flightNumber, firstFlight.flightNumber);
 assertEquals("origAirportId", expectedFlight1.origAirportId, firstFlight.origAirportId);
 assertEquals("destAirportId", expectedFlight1.destAirportId, firstFlight.destAirportId);
 assertEquals("origCity", expectedFlight1.origCity, firstFlight.origCity);
 assertEquals("destCity", expectedFlight1.destCity, firstFlight.destCity);
 assertEquals("equipType", expectedFlight1.equipmentType, firstFlight.equipmentType);

 // 3rd, verify 2nd flight is one we expected:
 FlightDto secondFlight = (FlightDto)flightsFromDest2.get(1);
 assertEquals("flight #", expectedFlight2.flightNumber, secondFlight.flightNumber);
 assertEquals("origAirportId", expectedFlight2.origAirportId, secondFlight.origAirportId);
 assertEquals("destAirportId", expectedFlight2.destAirportId, secondFlight.de stAirportId);
 assertEquals("origCity", expectedFlight2.origCity, secondFlight.origCity);
 assertEquals("destCity", expectedFlight2.destCity, secondFlight.destCity);
 assertEquals("equipType", expectedFlight2.equipmentType, secondFlight.equi pmentType);
 } else {
 fail("should be two flights from airport");
 }
}

Page 1 of 2

Exercise CS2: Fixture Setup

Situation
You have just inherited maintenance of the Flight Management System. The good news is
that there are automated unit tests. The bad news is that most of the tests look something
like these tests.

Instructions:
Examine the code in the handout and determine what code smells you are seeing.

Discussion Questions:
• Which Code Smells are we having?
• What are the underlying root causes?
• Which Patterns can we apply to alleviate them?

Page 2 of 2

Test Code
public void testGetFlightsByOriginAirports_TwoOutboundFlights() throws Exception {
 // Set up 2 flights from one airport
 // first, the origin airport
 BigDecimal calgaryAirportId = facade.createAirport(
 CALGARY_AIRPORT_CODE, CALGARY_AIRPORT_NAME, CALGARY_CITY);
 // next, the two destination airports
 BigDecimal sanFranAirportId = facade.createAirport(
 SAN_FRAN_AIRPORT_CODE, SAN_FRAN_AIRPORT_NAME, SAN_FRAN_CITY);
 BigDecimal vancouverAirportId = facade.createAirport(
 VANCOUVER_AIRPORT_CODE, VANCOUVER_AIRPORT_NAME, VANCOUVER_CITY);

 // now, the first flight DTO
 FlightDto expectedFlight1 = new FlightDto();
 expectedFlight1.setOriginAirportId(calgaryAirportId);
 expectedFlight1.setOriginAirportId(CALGARY_CITY);
 expectedFlight1.setDestinationAirportId(sanFranAirportId);
 expectedFlight1.setDestinationCity(SAN_FRAN_CITY);

 // Here’s where we actually create the first flight:
 expectedFlight1.setFlightNumber(facade.createFlight(calgaryAirportId, s anFranAirportId));

 // And the second flight DTO:
 FlightDto expectedFlight2 = new FlightDto();
 expectedFlight2.setOriginAirportId(calgaryAirportId);
 expectedFlight2.setOriginAirportId(CALGARY_CITY);
 expectedFlight2.setDestinationAirportId(vancouverAirportId);
 expectedFlight2.setDestinationCity(VANCOUVER_CITY);

 // Here’s where we actually create the second flight:
 expectedFlight2.setFlightNumber(facade.createFlight(calgaryAirportId, vancouverAirportId));

 // Exercise the SUT:
 List flightsFromCalgary = facade.getFlightsByOriginAirport(calgaryAirportId);
 assertEquals("Number of flights originating in Calgary", 2, flightsFromCalgary.size());

 // Verify that flights expectedFlight1 and expectedFlight2 are in the
 // list:
 // etc.
}

Page 1 of 3

Exercise BS 2

Instructions:

Symptoms:
Earlier today, you ran all the tests after making some code changes and the tests ran
green. You then went to lunch. When you came back you re-ran the tests “just to make
sure” before committing your changes. Now, several tests are failing or erroring.

Discussion Questions:
Based on the these symptoms, which Behaviour Smells are we having?
What questions do we need to ask to find out why they are occurring?
What are the underlying root causes?
What can we do about them?

You may also find it useful to ask yourselves these questions:

1. What kind of fixture are theses tests using?
2. Which fixture setup pattern is being used?
3. Why is this causing the failures?

Page 2 of 3

Supporting Material:
The following is the test runner and console output from the test runs. For convenience, the developers have decided to use a logging
tool to document what is happening in the various parts of the test in the console output.

Suggested Approach
You might find it helpful to draw a sketch of the Airports and Flights as you read the console output.

Console Output (Earlier today->Green)
Testcase Object: testGetFlightsByOriginAirport_OneOutboundFlight
 setUp
 createAirport(YYC)
 createAirport(LAX)

createAirport(LON)
 createFlight(YYC-LAX)
 method testGetFlightsByOriginAirport_OneOutboundFlight
 getFlightsByOriginAirport(YYC)
 tearDown
……
Testcase Object: testGetFlightsByDestAirport_OneInboundFlight
 setUp
 method testGetFlightsByDestAirport_OneInboundFlight

getFlightsByDestAirport(LAX)
 teardown
……
Testcase Object: testGetFlightsByOriginAirport_TwoOutboundFlights
 setUp
 method testGetFlightsByOriginAirport_TwoOutboundFlights
 createAirport(DIA)
 createFlight(YYC-DIA)
 getFlightsByOriginAirport(YYC)
 tearDown

Page 3 of 3

XUnit TestRunner Output(Nowà2 Failures)
FlightManagementFacadeTest. testGetFlightsByOriginAirport_OneOutboundFlight():
junit.framework.AssertionFailedError: Flights at origin number of flights:
expected:<1> but was:<2>
 at junit.framework.Assert.fail(Assert.java:47)
 at junit.framework.Assert.failNotEquals(Assert.java:282)
 at junit.framework.Assert.assertEquals(Assert.java:64)
 at junit.framework.Assert.assertEquals(Assert.java:201)
FlightManagementFacadeTest. testGetFlightsByOriginAirport_TwoOutboundFlights():
com.clrstream.flightmgnt.FlightManagementError: Airport already exists: ‘DIA’
 at com.clrstream.flightmgnt.FlightManagementFacadeTest.testGetFlightsByOriginAirport_TwoOutboundFlights():

Console Output (NowàFailure)
Testcase Object: testGetFlightsByOriginAirport_OneOutboundFlight
 setUp
 method testGetFlightsByOriginAirport_OneOutboundFlight
 getFlightsByOriginAirport(YYC)
 teardown
……
Testcase Object: testGetFlightsByDestAirport_OneInboundFlight
 setUp
 method testGetFlightsByDestAirport_OneInboundFlight

getFlightsByDestAirport(LAX)
 tearDown
……
Testcase Object: testGetFlightsByOriginAirport_TwoOutboundFlights
 setUp
 method testGetFlightsByOriginAirport_TwoOutboundFlights
 createAirport(DIA)
 tearDown

Page 1 of 2

Exercise BS 3

Instructions:

Symptoms:
Last week, all the tests ran clean. Since then, 10 new tests have been added (green) but
several existing tests are failing.

Discussion Questions:
Based on the these symptoms, which Behaviour Smells are we having?
What questions do we need to ask to find out why they are occurring?
What are the underlying root causes?
What can we do about them?

Supporting Material:

The following is the test runner and console output from the test runs. For convenience,
the developers have decided to use a logging tool to document the console output with
what is happening in the various parts of the test. Extra lines have been added to
delineate one test from the other.

Suggested Approach
You might find it helpful to draw a sketch of the Airports and Flights as you read the
console output.

XUnit TestRunner Output
FlightManagementFacadeTest.testGetFlightsByOriginAirport_TwoOutboundFlights():
junit.framework.AssertionFailedError: # of flights at origin 2OF:
expected:<2> but was:<4>
 at junit.framework.Assert.fail(Assert.java:47)
 at junit.framework.Assert.failNotEquals(Assert.java:282)
 at junit.framework.Assert.assertEquals(Assert.java:64)
 at junit.framework.Assert.assertEquals(Assert.java:201)

Page 2 of 2

Console Output (Historical, only 1 test shown)
Testcase Object: testGetFlightsByOriginAirport_TwoOutboundFlights
 setUp
 setupStandardAirportsAndFlights
 createAirport(NOF)
 createAirport(1OF)
 createAirport(2OF)
 createAirport(MIF)
 createFlight(1OF-MIF)
 createFlight(2OF-MIF)
 createFlight(2OF-1OF)
 running testGetFlightsByOriginAirport_TwoOutboundFlights

getFlightsByOriginAirport(2OF)
 tearDown
 removeStandardAirportsAndFlights
 removeFlight(IOF-MIF)
 removeFlight(2OF-MIF)
 removeFlight(2OF-1OF)
 removeAirport(NOF)
 removeAirport(1OF)
 removeAirport(2OF)
 removeAirport(MIF)

Console Output (Current, only 1 test shown)
Testcase Object: testGetFlightsByOriginAirport_TwoOutboundFlights
 setUp
 setupStandardAirportsAndFlights
 createAirport(NOF)
 createAirport(1OF)
 createAirport(2OF)
 createAirport(MIF)
 createFlight(IOF-MIF)
 createFlight(2OF-MIF)
 createFlight(2OF-1OF)
 addExtraFlights
 createFlight(2OF-MIF)
 createFlight(2OF-1OF)
 running testGetFlightsByOriginAirport_TwoOutboundFlights
 getFlightsByOriginAirport(2OF)
 tearDown
 removeExtraFlights
 removeAirport(2OF-MIF)
 removeAirport(2OF-1OF)
 removeStandardAirportsAndFlights
 removeFlight(IOF-MIF)
 removeFlight(2OF-MIF)
 removeFlight(2OF-1OF)
 removeAirport(NOF)
 removeAirport(1OF)
 removeAirport(2OF)
 removeAirport(MIF)

Page 1 of 1

Exercise BS 4
Symptoms:
You are the first one into the office this morning. You check the builds logs from the
overnight build and discover a test failure. When you run the test on your machine it
passes. Now what?

Instructions:
Given the following test code and the corresponding TestRunner output, how can you
change the test to provide more diagnostic output?

Discussion Questions:
Based on these symptoms, which Behaviour Smells are we having?
What questions do we need to ask to find out why they are occurring?
What are the underlying root causes?
What can we do about them?

Sample Code:
[TestFixture]
public class FlightSchedulerTest
{
 [Test]
 public void TestFlightSchedulerWith2ScheduledFlights()
 {
 Flight flight1 = new Flight(“YYC”, “LON”);
 Flight flight2 = new Flight(“LAX”, “YYC”);
 FlightScheduler sut = new FlightScheduler();

sut.Schedule(flight1);
sut.Schedule (flight2);

 Assert.AreEqual(flight2, sut.NextFlight(flight1));
 Assert.AreEqual(flight2, sut.top());
 }
}

Console Output:

TestCase FlightSchedulerTest. testFlightSchedulerWith2ScheduledFlights' failed:
 expected:<flight(LAX->YYC)”>
 but was:NIL

Page 1 of 1

Exercise Solutions

Solutions for the exercises are available at:

http://TutorialSolutions.xUnitPatterns.com

