
 1

Increasing the Effectiveness of Automated Testing

 Shaun Smith and Gerard Meszaros
 ClearStream Consulting Inc.
 1200 250 6th Avenue SW
 Calgary, Alberta, Canada T2P 3H7
 1-403-264-5840
 {shaun|gerard}@clrstream.com

ABSTRACT
This paper describes techniques that can be used to reduce
the execution time and maintenance cost of the automated
regression test suites that are used to drive development in
eXtreme Programming (XP). They are important because
developers are more likely to write and run test, thus
getting valuable feedback, if testing is as painless as
possible. Test execution time can be reduced by using an
in-memory database to eliminate the latency introduced by
accessing a disk-based database and/or file system. This
paper also describes how the effort of test development can
be reduced through the use of a framework that simplifies
setup and teardown of text fixtures.

Keywords
XP, Automated Testing, Database, Object/Relational
Mapping, Test-first Development, Business System,
Information System

1 INTRODUCTION
Automated testing is a useful practice in the toolkit of every
developer, whether they are doing XP or more “traditional”
forms of software development. The main drawing card is
the ability to rerun tests whenever you want reassurance
that things are working as required. However, for tests to
provide this valuable feedback to a developer they have to
run relatively quickly. On a series of Java projects building
business systems, we have found that running large
numbers of JUnit tests against a relational database is
normally too slow to provide the kind of rapid feedback
developers need. As a result we have developed a
collection of techniques, practices, and technologies that
together allow us to obtain the rapid feedback developers
need even when a relational database underlies the system
under construction.

2 DEVELOPER TESTING ISSUES
XP is heavily reliant on testing. Tests tell us whether we
have completed the implementation of some required
functionality and whether we have broken anything as a
result. On an XP project without extensive design
documentation, the tests, along with the code, become a
major means of communication. It is not just a case of
letting “the code speak to you”. The tests must speak to
you as well. And they should be listened to over and over
again.

Slow Test Execution
Having established that we rely so heavily on tests to guide
development and report on progress, it is no surprise that
we want to be able to run tests frequently for feedback. We
have found that it is essential for tests to execute very
quickly; our target is under 30 seconds for the typical test
run.

A purely economic argument is compelling enough by
itself. Assuming a developer runs the test suite every 10
minutes while developing, they will have run the suite 24
times in a single 4-hour programming session. A 1-minute
increase in test execution time increases development time
by 10% (24 minutes)! But the result of slow tests is even
more insidious than the economic argument insinuates!

If test execution is too slow, developers are more likely to
put off testing and that delays the feedback. The preferred
model of development is the making of a series of small
changes, each time running the appropriate test suite to
assess the impact of the change. If tests run slowly,
developers will likely make a number of small changes and
then take a “test timeout” to run the tests. The impact of
this delayed use of tests is two fold. First, debugging
becomes more difficult because if tests fail after a series of
changes, identifying the guilty change is difficult.
Developers may even forget they made some changes.
Murphy’s Law says that this forgotten change will most
likely be the source of the failing tests.

Second, if tests take so long to run that a developer leaves
her desk while a test suite runs, her train of thought may be
broken. This routine of starting a test suite and then getting
up for a stretch and a chat was observed regularly on one
project. The lengthy test suite execution time was because
of the large number of tests and the relational database
access required by each test. This combination became a
recurring pattern on a number of projects.

Expensive Test Development
Given the test-first approach taken by XP, the cost of
writing and maintaining tests becomes a critical issue. Unit
tests can usually be kept fairly simple, but functional tests
often require large amounts of fixture setup to do even
limited testing. On several projects, we found that the
functional tests were taking large amounts of time to write

 2

and needed considerable rework every time we added new
functionality. The complex tests were hard to understand
in part because they contained too much necessary setup.
We tried sharing previously setup objects across tests, but
we also found it difficult to write tests that did not have
unintended interactions with each other.

3 POSSIBLE SOLUTIONS
Business systems need access to enterprise data. In
traditional business systems, queries are made against
databases for such data. In testing such systems, we have
experienced slow test execution due to the latency of
queries and updates caused by disk I/O. The time to
execute a single query or update may only be a fraction of a
second, but we have often had to do several or many such
queries and updates in each test as text fixtures are setup,
tests are performed, and test fixtures are torn down.

Running Fewer Tests
One way to reduce the time required to obtain useful
feedback is to limit the number of tests that are run. The
JUnit Cookbook describes how to organize your tests so
that subsets can be run. Unfortunately, this strategy suffers
from the need for developers to choose an appropriate
subset of the tests to use. If they choose poorly, they may
be in for a nasty surprise when they run the full test suite
just before integration. Nevertheless, there is value in these
techniques. The key challenge is to know which tests to
run at a particular time.

Faster Execution Environment
Another approach would be taken to increase test execution
speed by using faster hardware, dedicated IP subnets,
more/better indices for the database, etc. However, these
techniques tend to yield percentage increases while we
needed guaranteed improvements measured in orders of
magnitude.

In-Memory Testing
Since the problem preventing the running of many tests is
the time required to query or update a database, the ideal
solution is to somehow avoid having to do this as much as
possible. We have replaced the relational database with a
simple in-memory “object database”. To obtain rapid
feedback from test suites, developers run against the
in-memory database while coding. The development
process focuses on the use of in-memory testing during
development and then switches to database testing before a
task is integrated and considered complete.

While our experiences are with relational databases, this
approach could also be used to speed up testing with object
databases or simple file-based persistence.

4 IN-MEMORY TESTING
The challenges for running tests faster by running them in
memory are:

1. How do you eliminate the database access from the

business logic? This requires Separation of
Persistence from Business Logic, including Object
Queries.

2. How do you know which tests can run in memory?
We use standard JUnit test packaging conventions and
aggregate tests capable of being run in-memory in a
separate test suite from those that require a database.

3. How do you specify whether they should be run in
memory on a particular test run? This requires
Dynamic Test Adaptation.

4. How do you deal with configuration specific behavior?
This requires Environment Plug-ins.

Separation of Persistence from Business Logic.
Switching back and forth between testing in-memory and
against a database is only possible if application code and
tests are unaware of the source of objects.

We have been building business systems using a “Business
Object Framework” for about five years in both Smalltalk
and Java. The objective of this framework is to move all
the “computer science” out of the business logic and into
the infrastructure. We have moved most of the “plumbing”
into service provider objects and abstract classes from
which business objects can inherit all the technical
behavior. The technical infrastructure incorporates the
TOPLink Object/Relational (O/R) mapping framework.
TOPLink is primarily responsible for converting database
data into objects and vice versa. It eliminates the code
needed to implement these data/object conversions (which
means no SQL in application code) and it does automatic
“faulting” into memory of objects reached by traversing
relationships between objects. This eliminates the need for
having explicit “reads” in the business logic.

In essence, TOPLink makes a JDBC-compliant data source
(such as a relational database) look like an object database.
Our infrastructure makes persistence automatic, which
leaves developers to focus on the business objects in an
application and not on the persistent storage of those
objects. By removing all knowledge of persistence from
application code, it also makes in-memory testing possible.

This approach is described in more detail in [4].

Querying (Finding objects by their attributes)
If applications access relational databases, querying using
table and column names, then replacing a relational
database with an in-memory object database becomes
problematic because an in-memory database contains
objects, not tables. How do you hide the different sources
of objects from the application, especially when you need
to search for specific objects based on the values of their
attributes?

Solution:
Object Queries—All queries are performed against the

 3

objects and their attributes, not against the underlying
database tables and columns. TOPLink’s query facility
constructs the corresponding SQL table/column query for
queries specified using objects and attributes. Application
code is unaware of where and how objects are stored—
which provides for the swapping of the “where and how”
between an in-memory and a relational database.

Our initial approach to querying was to move all database
queries into “finder” methods on Home (class or factory)
objects. But to support both in-memory and database
querying we had to provide two implementations of these
finder methods: one that used TOPLink’s query facility
against a relational database and the other that used the API
of the in-memory database to perform the query.

We quickly tired of having to implement queries twice and
have now implemented support for the evaluation of
TOPLink’s object/attribute queries against our in-memory
database. With this technology, the same query can be
used to find objects in our in-memory object database or
translated into SQL to be sent to a relational database.

Configuration Specific Behavior
When testing in memory, how do you handle functional
features of databases like stored procedures, triggers, and
sequences?

Solution:
The functional features of databases can be implemented in
memory by Environment Plug-ins (Strategy [3]). Each
function provided by the database has a pair of plug-ins.
When testing with a database, the database version of a
plug-in simply passes the request to the database for
fulfillment. The in-memory version of the plug-in emulates
the behavior (side effects) of the database plug-in.

In a relational database, a sequence table may used to
generate unique primary key values. The in-memory
version of the plug-in keeps a counter that is incremented
each time another unique key is requested.

Stored procedures can be particularly problematic when
building an interface to an existing (legacy) database. On
one project, we had to create an account whose state was
initialized by a stored procedure. During in-memory
testing, the state was not initialized so business rules based
on the account’s state would fail. We could have added
code to set the state during the account object initialization
but we did not want to have any code specific to testing in
the production system. We were able to avoid this using
an InMemoryAccountInitializationStrategy that
performed the required initialization during in-memory
testing and a NullObject [5] that did nothing when the
database’s stored procedure initialized the state.

Because it is possible that an in-memory plug-in behaves
differently than the database functionality it replaces, it is
still necessary to run the tests against the database at some

point. In practice, we require a full database test before
changes are permitted to be integrated.

Environment Configuration
How and when do you setup the test environment with the
appropriate Configuration Specific Behavior? How do you
decide which environment to use for this test run?

Solution:
Dynamic Test Adaptation – We use Test Decorators to
specify whether the test environment should be in-memory
or database. Using this technique we can choose to run a
test in memory for maximum speed or we can run the test
against the database for full accuracy. One hitch is the fact
that one can choose to run all the tests, just the tests for a
package, just the tests for a class or just a single test
method. To ensure that the tests run in the right
environment regardless of how they are invoked, we have
added methods to our TestCase base class that push the
decorators down to the individual test instance level.

On a recent project we created two Java packages: one
containing tests that could only be run in memory (because
the O/R mappings were not yet complete), and one for
multi-modal tests (tests that could be run either in memory
or against a database.) As the project progressed, tests
were moved from the in-memory test package to the
multi-modal test package. Combining this organizational
scheme with dynamic test adaptation, we were able to run
the multi-modal tests against either the in-memory or the
relational database.

5 OPTIMIZING TEST DEVELOPMENT
The JUnit test lifecycle specifies that one sets up a test
fixture before a test and tears it down afterwards. But we
found that many of our functional tests depended on a
large number of other objects. A test can fail if it depends
on a previous test’s side effects and those effects can vary
depending upon a test’s success or failure. We divided the
objects used by a test into three groups:

1. Objects referenced but never modified. These shared
objects can be setup once for all tests.

2. Objects created or modified specifically for a test.
These temporary objects must be created as part of
each test’s setup.

3. Objects created, modified or deleted during the test

We made it a hard and fast rule that tests cannot modify
any shared objects because to do so makes test inter-
dependent, which in turn makes tests much harder to
maintain.

Shared Test Objects
In database testing, these shared objects would be the initial
contents of database before any testing started. How do
you ensure that the shared objects are available in both in-
memory and database testing modes?

 4

Solution
In-Memory Database Initializer—For in-memory testing,
we define an object who’s responsibility is to create all of
the objects necessary to replicate the expected static
database contents. The test infrastructure delegates to it to
ensure that these objects are created before any tests need
them.

If there is an existing legacy database, testing can be
performed before the database O/R mappings are in place
by manufacturing objects in memory that correspond to
legacy data and placing them in the in-memory database.

When building applications that require a new database, an
in-memory database can be populated with objects created
by the Initializer. When the database schema is finally
defined, the Initializer can be run with persistence enabled.
The objects created by the Initializer are automatically
written to the database to create the initial database content.

Temporary Object Creation
At any one time, several developers may be running the
same tests. We need to ensure that the tests don’t interact
either with themselves or with other tests. How can we
ensure that newly created objects have unique keys and
contain all data required to make them valid? How can you
ensure that several instances of the same test being run
from several workstations aren’t using the same values for
keys thus causing transient test failures?

Solution:
Anonymous Object Creation— We created a
TestScenarioManager that is the hub of all test object
creation. Whenever a new kind of object is needed for a
test, a createAnonymousXxxx() method is added (with
any arguments required for customization.) These methods
create a fully-formed object that may be used in tests
without worrying about details like unique-key constraints
and unintended test interactions. Inherited methods
generate identifiers that are guaranteed to be unique.

Temporary Object Cleanup
Tests may create many new objects. Depending on where a
test failed, the objects to be cleaned up could vary
significantly. How can you ensure all the temporary
objects are cleaned up properly without having to write
complex teardown logic?

Solution:
Automatic Fixture Cleanup –To simplify teardown, each
createAnonymousXxxx() method registers the newly
created object as a transient object that needs to be deleted.
Each test inherits a teardown method from our TestCase
base class that automatically deletes all the registered test
objects. This eliminates the need to write any test-specific
teardown code. The test need only ensure that any objects it
creates as part of the testing logic (as opposed to fixture
setup) are also registered for automatic removal.

6 RESULTS
Reduced Test Execution Time
We have been able to run test suites of up to 260 tests in
under a minute when running against an in-memory
database. Those same tests run orders of magnitude slower
when running against a relational database. On a project
we are currently involved with, 53 tests are executing in
memory in a time of around 10 seconds while the same 53
tests running against an Oracle database have an execution
time of about 10 minutes. This is not surprising given the
relative cost of memory access (measured in nanoseconds),
compared with the cost of disk access (milliseconds.)

Reduced Testing Code
Through continuous improvement of our testing
infrastructure, we have reduced the average size of our tests
by 60%. Space does not permit inclusion of examples,
however; these can be found on our website [4]. We
estimate that this translates into an effort reduction of 70%.
We also suspect that the quality of testing has improved but
this is hard to measure directly.

7 CONCLUSIONS
The effectiveness of a test-first development process is
inversely proportional to the execution time of the tests.
The execution time of each test can be reduced by orders of
magnitude by removing the latency introduced by disk-
based I/O. This can be achieved by replacing the disk-
based database with an in-memory database. This is most
easily done if the application logic works exclusively with
objects rather than interacting with the database via SQL.
Test development and maintenance effort can be reduced
significantly through improvement of the testing
framework. There are a number of issues but each is
surmountable.

8 ACKNOWLEDGEMENTS
The authors would like to thank the colleagues who
provided comments on this paper and especially the clients
who provided the opportunities for these experiences.

9 REFERENCES
1. K. Beck, E. Gamma, “Test Infected: Programmers

Love Writing Tests”,, Available on-line at:
http://junit.sourceforge.net/doc/testinfected/testing.htm

2. E. Dustin, J. Rashka & J. Paul, Automated Software
Testing, Addison Wesley, ISBN: 0-201-43287-0

3. E. Gamma et al, “Design Patterns; Elements of
Reusable Object-Oriented Software”, Addison Wesley,
ISBN 0-201-63361-2

4. G. Meszaros, T. O’Connor, S. Smith, “Business Object
Framework”, OOPSLA’98 Addendum, available online
at http://www.clrstream.com/papers.html

5. B. Woolf, “Null Object“, Pattern Languages of
Program Design 3, Addison Wesley, ISBN 0-201-
31011-2 pp. 5-16

