
The Test Automation Manifesto

Gerard Meszaros

ClearStream Consulting
3710 205 5th Ave. SW

Calgary, AB
T2P 2V7 Canada
1-403-560-2408

gerard@clrstream.com

Shaun Smith
Sandbox Systems

Calgary, AB

Canada

shaun.smith@acm.org

Jennitta Andrea
ClearStream Consulting
3710 205 5th Ave. SW

Calgary, AB
T2P 2V7 Canada
1-403-264-5840

jennitta@clrstream.com

ABSTRACT
Two key aspects of eXtreme Programming are automated
testing and frequent refactoring. But is refactoring the best
way to arrive at a set of tests that are both sufficient and
maintainable? This paper builds on previously cataloged
test smells, classifies these smells into two broad categories
and introduces principles (or goals) for test automation. It
also provides the start of a generative pattern language that
helps guide the construction of automated tests that should
not require extensive refactoring.

Keywords
Automated Testing, Maintenance, JUnit, XUnit, Patterns,
Best Practices, Refactoring

1 INTRODUCTION
Much has been written about the need for automated unit
and acceptance tests as part of agile software development.
But writing good test code is hard and maintaining obtuse
test code is even harder. Since test code is optional (not
shipped to customers), there is a strong temptation to give
up testing when the tests becomes difficult or expensive to
maintain. Once you have given up on the principle of “keep
the bar green to keep the code clean”, much of the value of
the automated tests is lost.

Over a series of projects we have faced a number of
challenges to automated testing. The cost of writing and
maintaining test suites has been a particular challenge,
especially on projects with hundreds of tests. Fortunately,
necessity is the mother of invention and we, and others,
have developed a number of solutions to address these
challenges. We have also gone on to introspect about these
solutions to ask ourselves why they are good solutions and
what is the underlying test automation principle that they
uphold? We called these collected principles Test
Automation Manifesto. We believe that adherence to the
principles of the Manifesto will result in automated tests
that are easier to write, read, and maintain.

History
On our first test-first project, we encountered a number of
problems: the cost of updating existing tests was beginning

to become a major component of the overall cost to
implement a new feature, the cost of writing automated
tests for new features was increasing, and the effort
required to run the test suite was growing. Changes to the
software under test’s (SUT) API would impact dozens of
tests. For example, adding a parameter to a class
constructor would mean revisiting every test that created an
instance of that class. We found that as tests were
developed for more complex requirements, the effort to
setup and teardown test fixtures was becoming greater than
the effort to exercise and verify the new behavior. And we
found that we could no longer just press the “run” button to
run the test suite; we would have to truncate all the tables in
the database before we could run a test suite because a
previous run had not cleaned up after itself. Test
automation, which had seemed so simple at the beginning,
was becoming a burden. We still enjoyed the benefits of

automated testing, but the investment cost was increasing.
We had to find ways to reduce the cost while producing the
valuable return we wanted.

Economics of Test Automation
Of course there is will always be a cost to building and
maintaining an automated test suite. Ardent test automation
advocates will argue that it is worth spending more to have
the ability to change the software later. This “pay me now
so you don’t have to pay me later argument” doesn’t go
very far in a tough economic climate. And the argument
that the quality improvement is worth the extra cost doesn’t
go very far in these days of “just good enough” software
quality.

The goal should be to make the decision to do test

Effort
without

Automation

Effort
Spent

Automating

Effort
After

Automation
saved effort

Effort
After

Automation

Effort
After

Automation
saved effort

time

Increased
effort
(Hump)

Reduced
effortInitial

effort
Initial
effort

automation a “no-brainer” by ensuring that it does not
increase the cost of software development. This means that
the additional cost of building and maintaining automated
tests must be offset by savings through reduced manual unit
testing and debugging/troubleshooting as well as the
remediation cost of the defects that would have gone
undetected.

2 BAD SMELLS IN TEST CODE
At XP2001, van Deursen et al [6] introduced a number of
“bad smells” that occur specifically in test code. They
recommend a set of refactorings that can be applied to the
tests to remove them. Many of our initial problems with
test automation involved those smells as well a number of
others that we identified and developed solutions for. We
have also discovered that there are at least two different
kinds of smells: “code smells” that must be recognized
when looking at code, and “behavior smells” that manifest
themselves when you least expect. The latter are much
harder to ignore because tests are usually failing as you try
to integrate your code and you must unearth the problems
before you can “make the bar green”.

Bad Smells—Code
Code smells are the “classic” bad smells as first described
by Fowler in [3]. These smells must be recognized by the
test automater as they maintain test code. Most of the
smells introduced by Fowler are code smells. Code smells
typically affect maintenance cost of tests but they may also
be early warnings signs of behavior smells to follow.

Hard Coded Test Data—Lots of “Magic Numbers” or
Strings used when creating objects. More likely to result in
an Unrepeatable Test.

Test Code Duplication [6]—Same code sequences appear
many times in many tests. More code to modify when
something changes (causes Fragile Tests)

Mystery Guest [6]—When a test uses external resources
such as a file containing test data, it becomes hard to tell
what the test is really verifying. These tests often have a
“lopsided” feel to them (either setup or verification of
outcome is external to test).

Complex Test Code—Too much test code or Conditional
Test Logic. Hard to verify correctness; more likely to have
bugs in the tests

Can’t See the Forest for the Trees—So much test code that
it obscures what the test is verifying. The tests do not act as
a specification because they take too long to understand.

Conditional Test Logic—Tests containing conditional logic
(IF statements or loops). How do you verify that the
conditional logic is correct? Does it always test the same
thing? Do you have “untested” test code?

Complex Undo Logic—Complex fixture teardown code.
More likely to leave test environment corrupted by not

cleaning up correctly. Results in “data leaks” that may later
cause this or other tests to fail for no apparent reason.

Bad Smells—Behavior
Behavior smells are smells you encounter while running
tests.

Fragile Tests—Every time you change the SUT, tests won’t
compile or they fail. You need to modify lots of tests to get
things “green” again. This greatly increases the cost of
maintaining the system. Contributing code smells include
Test Code Duplication and Hard Coded Test Data.

Fragile Fixture—Tests start failing when a shared fixture is
modified (e.g., new records are put into the database). This
is because the tests are making assumptions about the
contents of the shared fixture. A contributing code smell is
Mystery Guest.

Interdependent Tests—When one test fails, a number of
other tests fail for no apparent reason because they depend
on a previously run tests’ side effects. Tests cannot be run
alone and are hard to maintain.

Unrepeatable Tests—Tests can’t be run repeatedly without
manual intervention. Caused by tests not cleaning up after
themselves and preventing themselves (or other tests) from
running again. The root cause is typically Hard-coded Test
Data.

Test Run War [6]—Seemingly random, transient test
failures. Only occurs when several people testing
simultaneously. Caused by parallel tests interacting with
each other through a shared test fixture.

Beyond the Refactoring of Smells
In [6], the authors provided suggested refactorings for each
of the bad smells. When we refactor production code, we
rely on our automated tests to discover any problems
introduced by the refactorings. But when we refactor our
tests, what will alert us to broken tests? If a test fails when
it used to pass, we can be certain that we have broken the
test, but is “no news, good news”? Unfortunately not! The
only way to verify that the tests haven’t been broken by the
refactorings is to modify the production code to introduce
each of the bugs that the tests are designed to detect. Tools
such as Jester [4] may help in this process but success is not
guaranteed.

We believe there is an alternative to all this test refactoring.
Many of the smells can be detected very early in test
automation or avoided entirely. Rather than asking what
refactoring you should apply to remove a smell, we prefer
to ask what principle that is being violated when the smell
is present.

Note that we are not advocating “big up-front design” of
the tests. As consultants, we have seen many examples of
testing frameworks built in anticipation of testing needs—
needs that may or may not be real. These frameworks

usually end up causing more problems than they solve.
What we are advocating is thoughtful application of test
automation patterns that we have found help us avoid the
smells. The patterns all support a small set of test
automation principles that are being violated when the
various smells are present. We propose these principles and
patterns as a “Test Automation Manifesto”.

3 TEST AUTOMATION MANIFESTO
Based on many years of experience building and
maintaining automated unit and acceptance tests, we
propose the following “Test Automation Manifesto”.

Automated tests should be:

Concise—As simple as possible and no simpler.

Self Checking—Test reports its own results; needs no
human interpretation.

Repeatable—Test can be run many times in a row
without human intervention.

Robust—Test produces same result now and forever.
Tests are not affected by changes in the external
environment.

Sufficient—Tests verify all the requirements of the
software being tested.

Necessary—Everything in each test contributes to the
specification of desired behavior.

Clear—Every statement is easy to understand

Efficient—Tests run in a reasonable amount of time.

Specific—Each test failure points to a specific piece of
broken functionality; unit test failures provide
“defect triangulation”

Independent—Each test can be run by itself or in a
suite with an arbitrary set of other tests in any
order.

Maintainable – Tests should be easy to understand and
modify and extend.

Traceable—To and from the code it tests and to and
from the requirements.

4 TEST AUTOMATION PATTERNS
Refactoring to eliminate smells is a good way to remove a
problem once it has been created. “Generative” test
automation patterns can be used to guide test automaters in
avoiding the problems in the first place. In our experience,
the following patterns can help ensure that automated tests
comply with the Test Automation Manifesto.

Readability Patterns

Single Glance Readable
A test should visibly tie the expected outcome to the
conditions that should cause it. A quick read of a test

should be enough to understand what it tests. The test
should fit in a single pane of the window without scrolling.

Intent Revealing Fixture
The part of the test that describes the fixture, the pre-
conditions of test, should focus on what’s relevant to this
specific test. Anything irrelevant is hidden (encapsulated).
This avoids the inclusion of objects and values that have no
direct bearing on the condition being tested. Well-named
Finder Methods and Anonymous Creation Methods are a
common ways to do this.

Finder Methods
When reusing objects in a shared fixture, rather than using
hard-coded object keys in your test, use clearly-named
Finder Methods. This makes it easy to understand why the
test is using specific objects and avoids the Mystery Guest
smell.

Outcome Describing Verification Logic
The verification part of the test should make it very clear
what the expect outcome should be. No “reading between
the lines” should be required.

Single Condition Test
Tests should verify a single test condition (a single
scenario). This makes them much easier to understand and
maintain. They also make it easier to organize the tests in a
way that makes it obvious which conditions are covered
(and which ones remain to be tested.)

Declarative Style
All parts of the test should describe what is (fixture) or
should be (expected results), rather than provide a recipe
for how to create/verify it. Use of an Expected Object is
one way to do this.

Robustness Patterns

Independent Tests
Each test is self-contained and makes no assumptions about
what other tests have run before it or will run after it.

Clean Slate Fixture
Tests set up everything they depend on. Avoids depending
on other tests, either on purpose or accidentally. Ensures
the state of all objects is well understood.

Anonymous Creation Methods
Tests use common utility methods to create unique objects
for each test and test run. Only the attributes of interest to
the test are passed as “constructor” arguments. This ensures
tests are repeatable and robust. It also prevents Test Run
Wars since each instance of this test will create it’s own,
unique objects so it cannot “collide” with itself. These
methods reduce the cost of writing tests by providing
reusable building blocks.

Automated Test Cleanup
Eliminates complex (and untestable) “undo logic” in tests.
Avoids test environment corruption (“data leaks”). Reduces
the cost of writing tests by eliminating the most error-prone
work.

SUT API Encapsulation
Reduces maintenance cost by isolating tests from
unimportant changes to SUT API. Helps make test more
readable by focusing on what is important.

Reuse Patterns

Reuse thru Test Building Blocks
Call building blocks rather than inheriting and overriding.
Facilitates Single Glance Readable tests.

Anonymous Creation Method
Reusable (and testable) fixture setup logic (see Robustness
Patterns).

Custom Assertions
Reusable object comparison logic that implements “test-
specific equality”. These are refactored using Extract
Method when the same set of assertions appears in two or
more tests. It simplifies the tests greatly yet avoids
polluting production code with non-production object
comparisons (which may need to vary from test to test
anyway.) Non-trivial custom assertions (e.g. comparing
XML) can and should be tested with unit tests of their own.

Parameterized Test
To apply the same test logic in a number of circumstances,
write a test that takes a parameter that is used to determine
which pair of inputs/expected-outputs to use. Either write a
set of individual tests that just delegate to the
Parameterized Test, or use a single Data-driven Test Suite
that contains the values to be tested.

Templated Framework Tests
When testing framework plug-ins where every plug-in
needs to be tested the same basic way, create a
Parameterized Test that implements Template Method
[GOF] which calls plug-in specific bits to setup the fixture
and verify the outcome. Use a Parameterized Test to tell
the Framework Test which plug-in to test.

Data-Driven Test Suite
When you have a large number of tests that require the
same logic but different data, consider creating a data-
driven test suite that reads the data and calls the appropriate
Parameterized Tests. This allows tests to be created
without “programming”. The FIT framework [2] is a good
example of this style of testing.

Other Patterns

Round-Trip Test
Avoid over-specification (and Fragile Tests) by testing
inputs and outputs at same “black box” interface.

Stub Out Slow
Replace any slow component that is depended upon with a
test stub. For example, stub out a database to speed up tests
by orders of magnitude [5].

Stub Out Dependencies Beyond Control
Anything beyond your direct control should be stubbed out
so it doesn’t cause unexpected results or delays.

5 CONCLUSION
Over a series of projects we have learned not only to
ruthlessly refactor our production code to keep it clean, but
we have also learned to do the same with test code. But the
principles of test code refactoring are not the same as those
for production code refactoring.

The Test Automation Manifesto defines the principles that
underlie highly effective tests. All test code refactoring
activities should improve the alignment with these
principles. Does a refactoring improve robustness? Does it
make it more concise or clear? If not, it is probably the
wrong refactoring.

When first writing a test, the Manifesto acts as a checklist
of the qualities that lead to tests that are less likely to need
refactoring. We have found that applying the generative
test automation patterns leads us to produce clear,
maintainable, robust automated tests that are much less
likely to require refactoring to add these qualities after the
fact.

6 REFERENCES
1. Appleton, Brad. Generative Patterns

http://www.enteract.com/~bradapp/docs/patterns-
intro.html#GenerativePatterns

2. Cunningham, Ward. FIT: Functional Integrated
Test. http://fit.c2.com.

3. Fowler, Martin. Refactoring: Improving the design
of existing code.

4. Moore, Ivan. Jester

5. Smith, Shaun; Meszaros, Gerard. Increasing the
Effectiveness of Automated Testing. The Second
International Conference on eXtreme
Programming and Agile Processes in Software
Engineering, XP2001. May 2001.

6. van Deursen, Arie (et al). Refactoring Test Code.
The Second International Conference on eXtreme
Programming and Agile Processes in Software
Engineering, XP2001. May 2001.

